Plant Pathol J > Volume 24(1); 2008 > Article
The Plant Pathology Journal 2008;24(1):74-79.
DOI:    Published online March 31, 2008.
Temporal Changes of Fungal and Bacterial Populations in Rice under Indoor Storage Conditions
Ji Yeon Oh, Mee Kyung Sang, Mun Il Ryoo, Ki Deok Kim
This research was conducted to evaluate fungal and bacterial populations in unhulled and brown rice under indoor storage conditions, and to examine the relationship between microbial populations and environmental conditions such as temperature and relative humidity. The temperature and relative humidity of the storage room ranged from 22.6℃ to 27.0℃ and 23.3% to 44.2%, respectively. Total fungal and bacterial populations remained relatively stable over the storage period. Predominant fungi included Aspergillus candidus, A. flavus, A. fumigatus, and Penicillium spp.; the predominant bacteria were Bacillus, Microbacterium, Sphingomonas, and Methylobacterium spp. Total fungi and bacteria were not significantly correlated with either unhulled (r=0.448, P=0.372) or brown (r=0.466, P=0.351) rice. In unhulled rice, total fungi showed positive correlations with total Aspergillus (r=0.994, P<0.001) and total Penicillium (r=0.906, P<0.05); A. flavus was positively correlated with total Aspergillus (r=0.913, P<0.05) and total fungi (r=0.868, P<0.05). In brown rice, Bacillus spp. was also positively correlated with total bacteria (r=0.998, P<0.001). Mean temperature was negatively correlated with A. candidus (r=-0.852, P< 0.05) and total fungi (r=-0.961, P<0.01), and mean relative humidity was positively correlated with total Penicillium spp. (r=0.884, P<0.05) in brown rice. Hence these results could provide basic information on the fungal and bacterial populations in unhulled and brown rice stored under room conditions, and on the effect of environmental conditions on the populations of fungi and bacteria, especially Aspergillus and Penicillium spp.
Key Words: Aspergillus, Penicillium, relative humidity, rice, storage bacteria, storage fungi, temperature
METRICS Graph View
  • 7 Crossref
  •  0 Scopus
  • 776 View
  • 1 Download
Related articles

Editorial Office
Rm,904 (New Bldg.) The Korean Science & Technology Center 22,
Teheran-ro 7-Gil, Gangnamgu, Seoul 06130, Korea
Tel: +82-2-557-9360    Fax: +82-2-557-9361    E-mail:                

Copyright © 2024 by Korean Society of Plant Pathology.

Developed in M2PI

Close layer
prev next