Plant Pathol J > Volume 25(3); 2009 > Article
The Plant Pathology Journal 2009;25(3):247-255.
DOI: https://doi.org/10.5423/PPJ.2009.25.3.247    Published online September 30, 2009.
Molecular Biological Diagnosis of Meloidogyne Species Occurring in Korea
Hyung Keun Oh, Chang Hwan Bae, Man Il Kim, Xin Long Wan, Seung Han Oh, Yeon Soo Han, Hyang Burm Lee, Ik Soo Kim
Abstract
Root-knot nematode species, such as Meloidogyne hapla, M. incognita, M. arenaria, and M. javanica are the most economically notorious nematode pests, causing serious damage to a variety of crops throughout the world. In this study, DNA sequence analyses were performed on the D3 expansion segment of the 28S gene in the ribosomal DNA in an effort to characterize genetic variations in the three Meloidogyne species obtained from Korea and four species from the United States. Further, PCRRFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism), SCAR (Sequence Characterized Amplified Region) PCR and RAPD (Randomly Amplified Polymorphic DNA) were also utilized to develop methods for the accurate and rapid species identification of the root-knot nematode species. In the sequence analysis of the D3 expansion segment, only a few nucleotide sequence variations were detected among M. incognita, M. arenaria, and M, javanica, but not M. hapla. As a result of our haplotype analysis, haplotype 5 was shown to be common in M. arenaria, M. incognita, M. javanica, but not in the facultatively parthenogenetic species, M. hapla. PCR-RFLP analysis involving the amplification of the mitochondrial COII and large ribosomal RNA (lrRNA) regions yielded one distinct amplicon for M. hapla at 500 bp, thereby enabling us to distinguish M. hapla from M. incognita, M. arenaria, and M. javanica reproduced via obligate mitotic parthenogenesis. SCAR markers were used to successfully identify the four tested root-knot nematode species. Furthermore, newly attempted RAPD primers for some available root-knot nematodes also provided some species-specific amplification patterns that could also be used to distinguish among root-knot nematode species for quarantine purposes.
Key Words: PCR-RFLP, RAPD, Root-knot nematodes, SCAR PCR, 28S rDNA sequence


ABOUT
BROWSE ARTICLES
EDITORIAL POLICY
FOR CONTRIBUTORS
Editorial Office
Rm,904 (New Bldg.) The Korean Science & Technology Center 22,
Teheran-ro 7-Gil, Gangnamgu, Seoul 06130, Korea
Tel: +82-2-557-9360    Fax: +82-2-557-9361    E-mail: paper@kspp.org                

Copyright © 2024 by Korean Society of Plant Pathology.

Developed in M2PI

Close layer
prev next