Plant Pathol J > Volume 26(1); 2010 > Article
The Plant Pathology Journal 2010;26(1):25-31.
DOI: https://doi.org/10.5423/PPJ.2010.26.1.025    Published online March 31, 2010.
Development of Recombinant Coat Protein Antibody Based IC-RT-PCR and Comparison of its Sensitivity with Other Immunoassays for the Detection of Papaya Ringspot Virus Isolates from India
M. Sreenivasulu, D. V. R. Sai Gopal
Abstract
Papaya ringspot virus (PRSV) causes the most widespread and devastating disease in papaya. Isolates of PRSV originating from different geographical regions in south India were collected and maintained on natural host papaya. The entire coat protein (CP) gene of Papaya ringspot virus-P biotype (PRSV-P) was amplified by RTPCR. The amplicon was inserted into pGEM-T vector, sequenced and sub cloned into a bacterial expression vector pRSET-A using a directional cloning strategy. The PRSV coat protein was over-expressed as a fusion protein in Escherichia coli. SDS-PAGE gel revealed that CP expressed as a ~40 kDa protein. The recombinant coat protein (rCP) fused with 6x His-tag was purified from E.coli using Ni-NTA resin. The antigenicity of the fusion protein was determined by western blot analysis using antibodies raised against purified PRSV. The purified rCP was used as an antigen to produce high titer PRSV specific polyclonal antiserum. The resulting antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RTPCR) assay and compared its sensitivity levels with ELISA based assays for detection of PRSV isolates. ICRT- PCR was shown to be the most sensitive test followed by dot-blot immunobinding assay (DBIA) and plate trapped ELISA.
Key Words: IC-RT-PCR, Papaya ringspot virus, polyclonal antibodies, recombinant coat protein


ABOUT
BROWSE ARTICLES
EDITORIAL POLICY
FOR CONTRIBUTORS
Editorial Office
Rm,904 (New Bldg.) The Korean Science & Technology Center 22,
Teheran-ro 7-Gil, Gangnamgu, Seoul 06130, Korea
Tel: +82-2-557-9360    Fax: +82-2-557-9361    E-mail: paper@kspp.org                

Copyright © 2024 by Korean Society of Plant Pathology.

Developed in M2PI

Close layer
prev next