The Plant Pathology Journal 2010;26(3):209-215.
Published online September 30, 2010.
Oomycetes RXLR Effectors Function as Both Activator and Suppressor of Plant Immunity
Sang Keun Oh, Sophien Kamoun, Do Il Choi
Abstract
Plant pathogenic oomycetes, such as Phytophthora spp., are the causal agent of the most devastating plant diseases. During infection, these pathogens accomplish parasitic colonization of plants by modulating host defenses through an array of disease effector proteins. These effectors are classified in two classes based on their target sites in the host plant. Apoplastic effectors are secreted into the plant extracellular space, and cytoplasmic effectors are translocated inside the plant cell, through the haustoria that enter inside living host cell. Recent characterization of some oomycete Avr genes showed that they encode effector protein with general modular structure including N-terminal conserved RXLR-DEER motif. More detailed evidences suggest that these AVR effectors are secreted by the pathogenic oomycetes and then translocated into the host plant cell during infection. Recent findings indicated that one of the P. infestans effector, Avrblb2, specifically induces hypersensitive response (HR) in the presence of Solanum bulbocastanum late blight resistance genes Rpi-blb2. On the other hand, another secreted RXLR protein PexRD8 originated from P. infestans suppressed the HCD triggered by the elicitin INF1. In this review, we described recent progress in characterized RXLR effectors in Phytophthora spp. and their dual functions as modulators of host plant immunity.
Key Words: hypersensitive response, Phytophthora, RXLR effector
TOOLS
METRICS Graph View
  • 576 View
  • 7 Download
Related articles


ABOUT
BROWSE ARTICLES
EDITORIAL POLICY
FOR CONTRIBUTORS
Editorial Office
Rm,904 (New Bldg.) The Korean Science & Technology Center 22,
Teheran-ro 7-Gil, Gangnamgu, Seoul 06130, Korea
Tel: +82-2-557-9360    Fax: +82-2-557-9361    E-mail: paper@kspp.org                

Copyright © 2024 by Korean Society of Plant Pathology.

Developed in M2PI

Close layer
prev next