Anderson, M. J. 2008. A new method for non-parametric multivariate analysis of variance.
Austral Ecol. 26:32-46.
Arrebola, E., Sivakumar, D., Bacigalupo, R. and Korsten, L. 2010. Combined application of antagonist
Bacillus amyloliquefaciens and essential oils for the control of peach postharvest diseases.
Crop Prot. 29:369-377.
Ávalos, S. R., Martínez-Peniche, R. Á., Soto-Muñoz, L. and Chávaro-Ortíz, M. S. 2012. Modes of action of four strains of antagonistic yeasts against Penicillium expansum LINK in apple. Rev. Chapingo. Ser. Hortic. 18:227-238.
Barad, S., Espeso, E. A., Sherman, A. and Prusky, D. 2016. Ammonia activates
pacC and patulin accumulation in an acidic environment during apple colonization by
Penicillium expansum.
Mol. Plant Pathol. 17:727-740.
Bevardi, M., Frece, J., Mesarek, D., Bošnir, J., Mrvčić, J., Delaš, F. and Markov, K. 2013. Antifungal and antipatulin activity of
Gluconobacter oxydans isolated from apple surface.
Arh. Hig. Rada. Toksikol. 64:279-284.
Bever, J. D., Platt, T. G. and Morton, E. R. 2012. Microbial population and community dynamics on plant roots and their feedbacks on plant communities.
Annu. Rev. Microbiol. 66:265-283.
Burch, A. Y., Do, P. T., Sbodio, A., Suslow, T. V. and Lindow, S. E. 2016. High-level culturability of epiphytic bacteria and frequency of biosurfactant producers on leaves.
Appl. Environ. Microbiol. 82:5997-6009.
Calvo, J., Calvente, V., de Orellano, M. E., Benuzzi, D. and de Tosetti, M. I. 2007. Biological control of postharvest spoilage caused by
Penicillium expansum and
Botrytis cinerea in apple by using the bacterium
Rahnella aquatilis.
Int. J. Food Microbiol. 113:251-257.
Calvo, H., Marco, P., Blanco, D., Oria, R. and Venturini, M. E. 2017. Potential of a new strain of
Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases.
. Food Microbiol. 63:101-110.
Campos-Martínez, A., Valle, M. G., Flores-Moctezuma, H. E., Suárez-Rodríguez, R., Ramírez-Trujillo, J. A. and Hernández-Lauzardo, A. N. 2016. Antagonistic yeasts with potential to control
Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. and
Colletotrichum acutatum J.H. Simmonds on avocado fruits.
Crop Prot. 89:101-104.
Chen, X., Zhang, Y., Fu, X., Li, Y. and Wang, Q. 2016. Isolation and characterization of
Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot.
Postharvest Biol. Technol. 115:113-121.
Demoz, B. T. and Korsten, L. 2006.
Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens.
Biol. Control. 37:68-74.
de Oliveira-Nascimento, I., Rodrigues, A. A. C., de Moraes Catarino, F. H., de Sousa, F. A., Corsi, M. C. F. and Catarino, A. 2016. Isolation, identification and in vitro evaluation of Bacillus spp. in control of Magnaporthe oryzae comparing evaluation methods. Afr. J. Agric. Res. 11:1743-1749.
Droby, S. and Wisniewski, M. 2018. The fruit microbiome: a new frontier for postharvest biocontrol and postharvest biology.
Postharvest Biol. Technol. 140:107-112.
Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K. and Vishwakarma, R. K. 2019. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review.
Crit. Rev. Food Sci. Nutr. 59:1498-1513.
Mosa, W., Paszt, L., Frąc, M., Trzciński, P., Treder, W. and Klamkowski, K. 2018. The role of biofertilizers in improving vegetative growth, yield and fruit quality of apple. Hortic. Sci. (Prague). 45:173-180.
Fourie, J. F. and Holz, G. 1998. Effects of fruit and pollen exudates on growth of
Botrytis cinerea and infection of plum and nectarine fruit.
Plant Dis. 82:165-170.
Fredriksson, N. J., Hermansson, M. and Wilén, B. M. 2013. The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant.
PLoS ONE. 8:e76431
Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M. and Sarniguet, A. 2011. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists.
Microbiol. Mol. Biol. Rev. 75:583-609.
Hanif, A., Zhang, F., Li, P., Li, C., Xu, Y., Zubair, M., Zhang, M., Jia, D., Zhao, X., Liang, J., Majid, T., Yan, J., Farzand, A., Wu, H., Gu, Q. and Gao, X. 2019. Fengycin produced by
Bacillus amyloliquefaciens FZB42 inhibits
Fusarium graminearum growth and mycotoxins biosynthesis.
Toxins. 11:295
Jackson, C. R. and Denney, W. C. 2011. Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern Magnolia
(Magnolia grandiflora).
Microb. Ecol. 61:113-122.
Janaki, T., Nayak, B. K. and Ganesan, T. 2016. Antifungal activity of soil actinomycetes from the mangrove Avicennia marina. J. Med. Plants Stud. 4:05-08.
Janisiewicz, W. 1996. Ecological diversity, niche overlap, and coexistence of antagonists used in developing mixtures for biocontrol of postharvest diseases of apples.
Phytopathology. 86:473-479.
Janisiewicz, W. J., Jurick, W. M., nd, P, eter, K. A., Kurtzman, C. P. and Buyer, J. S. 2014. Yeasts associated with plums and their potential for controlling brown rot after harvest.
Yeast. 31:207-218.
Janssen, B. J., Thodey, K., Schaffer, R. J., Alba, R., Balakrishnan, L., Bishop, R., Bowen, J. H., Crowhurst, R. N., Gleave, A. P., Ledger, S., McArtney, S., Pichler, F. B., Snowden, K. C. and Ward, S. 2008. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit.
BMC Plant Biol. 8:16
Juhneviča, K., Skudra, G. and Skudra, L. 2011. Evaluation of microbiological contamination of apple fruit stored in a modified atmosphere. Environ. Exp. Biol. 9:53-59.
Kasfi, K., Taheri, P., Jafarpour, B. and Tarighi, S. 2018. Characterization of antagonistic microorganisms against
Aspergillus spp. from grapevine leaf and berry surfaces.
J. Plant Pathol. 100:179-190.
Kaur, A., Sood, A., Kaur, S. and Bhowate, P. 2017. Bacterial population associated with fruits and vegetables and its treatment using antimicrobial rinsing.
Int. J. Curr. Microbiol. Appl. Sci. 6:2099-2107.
Kindt, R. and Code, R. 2005. Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre, Nairobi, Kenya. 203.
Konarska, A. 2014. Morphological, histological and ultrastructural changes in fruit epidermis of apple
Malus domestica cv. Ligol (Rosaceae) at fruit set, maturity and storage.
Acta Biol. Crac. Ser. Bot. 56:35-48.
Krzyzanowska, D. M., Maciag, T., Siwinska, J., Krychowiak, M., Jafra, S. and Czajkowski, R. 2019. Compatible mixture of bacterial antagonists developed to protect potato tubers from soft rot caused by
Pectobacterium spp. and
Dickeya spp.
Plant Dis. 103:1374-1382.
Leff, J. W. and Fierer, N. 2013. Bacterial communities associated with the surfaces of fresh fruits and vegetables.
PLoS ONE. 8:e59310
Leibinger, W., Breuker, B., Hahn, M. and Mendgen, K. 1997. Control of postharvest pathogens and colonization of the apple surface by antagonistic microorganisms in the field.
Phytopathology. 87:1103-1110.
Li, H. X. and Xiao, C. L. 2008. Characterization of fludioxonilresistant and pyrimethanil-resistant phenotypes of
Penicillium expansum from apple.
Phytopathology. 98:427-435.
Li, Y., Han, L.-R., Zhang, Y., Fu, X., Chen, X., Zhang, L., Mei, R. and Wang, Q. 2013. Biological control of apple ring rot on fruit by
Bacillus amyloliquefaciens 9001.
Plant Pathol. J. 29:168-173.
Lopes, P. R. C., Oliveira, I. V. D. M., Silva, R. R. S. D. and Cavalcante, Í. H. L. 2013. Growing Princesa apples under semiarid conditions in northeastern Brazil.
Acta Sci. Agron. 35:93-99.
Lorenzini, M. and Zapparoli, G. 2020. Epiphytic bacteria from withered grapes and their antagonistic effects on grape-rotting fungi.
Int. J. Food Microbiol. 319:108505
Luziatelli, F., Ficca, A. G., Colla, G., Švecová, E. and Ruzzi, M. 2019. Foliar application of vegetal-derived bioactive compounds stihhajeo mulates the growth of beneficial bacteria and enhances microbiome biodiversity in lettuce.
Front. Plant Sci. 10:60
Malfanova, N., Kamilova, F., Validov, S., Shcherbakov, A., Chebotar, V., Tikhonovich, I. and Lugtenberg, B. 2011. Characterization of
Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed.
Microb. Biotechnol. 4:523-532.
Methe, B. A., Hiltbrand, D., Roach, J., Xu, W., Gordon, S. G., Goodner, B. W. and Stapleton, A. E. 2020. Functional gene categories differentiate maize leaf drought-related microbial epiphytic communities.
PLoS ONE. 15:e0237493
Nongkhlaw, F. M. and Joshi, S. R. 2015. Investigation on the bioactivity of culturable endophytic and epiphytic bacteria associated with ethnomedicinal plants.
J. Infect. Dev. Ctries. 9:954-961.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E. and Wagner, H. 2015 vegan: community ecology package: ordination methods, diversity analysis and other functions for community and vegetation ecologists. R package, version 2.5-6. URL
https://cran.r-project.org/src/contrib/Archive/vegan/. 14 July 2020.
Rodríguez-Chávez, J. L., Juárez-Campusano, Y. S., Delgado, G. and Aguilar, J. R. 2019. Identification of lipopeptides from
Bacillus strain Q11 with ability to inhibit the germination of
Penicillium expansum, the etiological agent of postharvest blue mold disease.
Postharvest Biol. Technol. 155:72-79.
Rudrappa, T., Czymmek, K. J., Paré, P. W. and Bais, H. P. 2008. Root-secreted malic acid recruits beneficial soil bacteria.
Plant Physiol. 148:1547-1556.
Rungjindamai, N. 2016. Isolation and evaluation of biocontrol agents in controlling anthracnose disease of mango in Thailand.
J. Plant Prot. Res. 56:306-311.
Saravanakumar, D., Ciavorella, A., Spadaro, D., Garibaldi, A. and Gullino, M. L. 2008.
Metschnikowia pulcherrima strain MACH1 outcompetes
Botrytis cinerea, Alternaria alternata and
Penicillium expansum in apples through iron depletion.
Postharvest Biol. Technol. 49:121-128.
Sartori, M., Nesci, A., Formento, Á. and Etcheverry, M. 2015. Selection of potential biological control of
Exserohilum turcicum with epiphytic microorganisms from maize.
Rev. Argent. Microbiol. 47:62-71.
Sarwar, A., Brader, G., Corretto, E., Aleti, G., Ullah, M. A., Sessitsch, A. and Hafeez, F. Y. 2018. Qualitative analysis of biosurfactants from
Bacillus species exhibiting antifungal activity.
PLoS ONE. 13:e0198107
Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores.
Anal. Biochem. 160:47-56.
Shade, A., Jacques, M. A. and Barret, M. 2017. Ecological patterns of seed microbiome diversity, transmission, and assembly.
Curr. Opin. Microbiol. 37:15-22.
Sharifazizi, M., Harighi, B. and Sadeghi, A. 2017. Evaluation of biological control of
Erwinia amylovora, causal agent of fire blight disease of pear by antagonistic bacteria.
Biol. Control. 104:28-34.
Shehata, M. G., Badr, A. N., Abdel-Razek, A. G., Hassanein, M. M. and Amra, H. A. 2017. Oil-bioactive films as an antifungal application to save post-harvest food crops.
Annu. Res. Rev. Biol. 16:1-16.
Sholberg, P., Marchi, A. and Bechard, J. 1995. Biocontrol of postharvest diseases of apple using
Bacillus spp. isolated from stored apples.
Can. J. Microbiol. 41:247-252.
Spadoni, A., Guidarelli, M., Phillips, J., Mari, M. and Wisniewski, M. 2015. Transcriptional profiling of apple fruit in response to heat treatment: involvement of a defense response during
Penicillium expansum infection.
Postharvest Biol. Technol. 101:37-48.
Teixidó, N., Usall, J., Magan, N. and Viñas, I. 1999. Microbial population dynamics on Golden Delicious apples from bud to harvest and effect of fungicide applications.
Ann. Appl. Biol. 134:109-116.
Tessmer, M. A., Appezzato-da-Glória, B. and Antoniolli, L. R. 2016. Influence of growing sites and physicochemical features on the incidence of lenticel breakdown in 'Gala' and 'Galaxy' apples.
Sci. Hortic. 205:119-126.
Tosco, A., Chobelet, A., Bathany, K., Schmitter, J.-M., Urdaci, M. C. and Buré, C. 2015. Characterization by tandem mass spectrometry of biologically active compounds produced by Bacillus strains.
J. Appl. Bioanal. 1:19-25.
Venables, W. N. and Ripley, B. D. 2002. Modern applied statistics with S. 4th ed. Springer, New York, NY, USA. 495
Wallace, R. L., Hirkala, D. L. and Nelson, L. M. 2017. Postharvest biological control of blue mold of apple by
Pseudomonas fluorescens during commercial storage and potential modes of action.
Postharvest Biol. Technol. 133:1-11.
Wang, Y., Yuan, Y., Liu, B., Zhang, Z. and Yue, T. 2016. Biocontrol activity and patulin-removal effects of
Bacillus subtilis, Rhodobacter sphaeroides and
Agrobacterium tumefaciens against
Penicillium expansum.
J. Appl. Microbiol. 121:1384-1393.
Wen, Z., Duan, T., Christensen, M. J. and Nan, Z. 2015.
Bacillus subtilis subsp
. spizizenii MB29 controls alfalfa root rot caused by
Fusarium semitectum.
Biocontrol Sci. Technol. 25:898-910.
Wrona, B. and Grabowski, M. 2004. Influence of fructose and glucose occurring on fruit surface on the growth of fungi that cause sooty blotch of apple. J. Plant Prot. Res. 44:287-291.
Xu, X. M. and Jeger, M. J. 2013. Combined use of two biocontrol agents with different biocontrol mechanisms most likely results in less than expected efficacy in controlling foliar pathogens under fluctuating conditions: a modeling study.
Phytopathology. 103:108-116.
Yang, H., Li, X., Li, X., Yu, H. and Shen, Z. 2015. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC.
Anal. Bioanal. Chem. 407:2529-2542.
Yu, S.-M., Oh, B.-T. and Lee, Y. H. 2012. Biocontrol of green and blue molds in postharvest satsuma mandarin using
Bacillus amyloliquefaciens JBC36.
Biocontrol Sci. Technol. 22:1181-1197.
Yu, X., Ai, C., Xin, L. and Zhou, G. 2011. The siderophore-producing bacterium,
Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper.
Eur. J. Soil Biol. 47:138-145.
Zhang, Y., Li, P. and Cheng, L. 2010. Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in 'Honeycrisp' apple flesh.
Food Chem. 123:1013-1018.