Albertyn, J., Hohmann, S., Thevelein, J. M. and Prior, B. A. 1994.
GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in
Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway.
Mol. Cell. Biol. 14:4135-4144.
André, L., Hemming, A. and Adler, L. 1991. Osmoregulation in
Saccharomyces cerevisiae: studies on the osmotic induction of glycerol production and glycerol-3-phosphate dehydrogenase (NAD+).
FEBS Lett. 286:13-17.
Bahar, O., Goffer, T. and Burdman, S. 2009. Type IV pili are required for virulence, twitching motility, and biofilm formation of
Acidovorax avenae subsp.
citrulli.
Mol. Plant-Microbe Interact. 22:909-920.
Bahar, O., Levi, N. and Burdman, S. 2011. The cucurbit pathogenic bacterium
Acidovorax citrulli requires a polar flagellum for full virulence before and after host-tissue penetration.
Mol. Plant-Microbe Interact. 24:1040-1050.
Blötz, C. and Stülke, J. 2017. Glycerol metabolism and its implication in virulence in
Mycoplasma.
FEMS Microbiol. Rev. 41:640-652.
Burdman, S. and Walcott, R. 2012.
Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry.
Mol. Plant Pathol. 13:805-815.
Choi, H. W., Tian, M., Manohar, M., Harraz, M. M., Park, S.-W., Schroeder, F. C., Snyder, S. H. and Klessig, D. F. 2015. Human GAPDH is a target of aspirin's primary metabolite salicylic acid and its derivatives.
PLoS ONE. 10:e0143447
Daniels, J. B., Scoffield, J., Woolnough, J. L. and Silo-Suh, L. 2014. Impact of glycerol-3-phosphate dehydrogenase on virulence factor production by
Pseudomonas aeruginosa.
Can. J. Microbiol. 60:857-863.
Felgner, S., Frahm, M., Kocijancic, D., Rohde, M., Eckweiler, D., Bielecka, A., Bueno, E., Cava, F., Abraham, W.-R., Curtiss, R., rd, Hä, ussler, S., Erhardt, M. and Weiss, S. 2016.
aroAdeficient
Salmonella enterica serovar Typhimurium is more than a metabolically attenuated mutant.
mBio. 7:e01220-16.
Guindalini, C., Lee, K. S., Andersen, M. L., Santos-Silva, R., Bittencourt, L. R. A. and Tufik, S. 2010. The influence of obstructive sleep apnea on the expression of glycerol-3-phosphate dehydrogenase I gene.
Exp. Biol. Med. 235:52-56.
Hames, C., Halbedel, S., Hoppert, M., Frey, J. and Stülke, J. 2009. Glycerol metabolism is important for cytotoxicity of
Mycoplasma pneumoniae.
J. Bacteriol. 191:747-753.
Hao, G., Chen, H., Gu, Z., Zhang, H., Chen, W. and Chen, Y. Q. 2015. Metabolic engineering of
Mortierella alpina for arachidonic acid production with glycerol as carbon source.
Microb. Cell Fact. 14:205
Jiménez-Guerrero, I., Pérez-Montaño, F., Da Silva, G. M., Wagner, N., Shkedy, D., Zhao, M., Pizarro, L., Bar, M., Walcott, R., Sessa, G., Pupko, T. and Burdman, S. 2019. Show me your secret(ed) weapons: a multifaceted approach reveals a wide arsenal of type III-secreted effectors in the cucurbit pathogenic bacterium
Acidovorax citrulli and novel effectors in the
Acidovorax genus.
Mol. Plant Pathol. 21:17-37.
Johnson, K. L. and Walcott, R. R. 2013. Quorum sensing contributes to seed-to-seedling transmission of
Acidovorax citrulli on watermelon.
J. Phytopathol. 161:562-573.
Kim, M., Lee, J., Heo, L. and Han, S.-W. 2020. Putative bifunctional chorismate mutase/prephenate dehydratase contributes to the virulence of
Acidovorax citrulli.
Front. Plant Sci. 11:569552
Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. and Peterson, K. M. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes.
Gene. 166:175-176.
Latin, R. X. and Hopkins, D. L. 1995. Bacterial fruit blotch on watermelon: the hypothetical exam question becomes reality.
Plant Dis. 79:761-765.
Latin, R. X. and Rane, K. K. 1990. Bacterial fruit blotch of watermelon in Indiana.
Plant Dis. 74:331
Liu, J., Tian, Y., Zhao, Y., Zeng, R., Chen, B., Hu, B. and Walcott, R. R. 2019. Ferric uptake regulator (FurA) is required for
Acidovorax citrulli virulence on watermelon.
Phytopathology. 109:1997-2008.
Park, H.-J., Lee, J., Kim, M. and Han, S.-W. 2020. Profiling differentially abundant proteins by overexpression of three putative methyltransferases in
Xanthomonas axonopodis pv.
glycines.
Proteomics. 20:e1900125
Park, H.-J., Seong, H. J., Sul, W. J., Oh, C.-S. and Han, S.-W. 2017. Complete genome sequence of Acidovorax citrulli strain KACC17005, a causal agent for bacterial fruit blotch on watermelon. Korean J. Microbiol. 53:340-341.
Roy, A., Kucukural, A. and Zhang, Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction.
Nat. Protoc. 5:725-738.
Schmidl, S. R., Otto, A., Lluch-Senar, M., Piñol, J., Busse, J., Becher, D. and Stülke, J. 2011. A trigger enzyme in
Mycoplasma pneumoniae: impact of the glycerophosphodiesterase GlpQ on virulence and gene expression.
PLoS Pathog. 7:e1002263
Shi, Y., Wang, H., Yan, Y., Cao, H., Liu, X., Lin, F. and Lu, J. 2018. Glycerol-3-phosphate shuttle is involved in development and virulence in the rice blast fungus
Pyricularia oryzae.
Front. Plant Sci. 9:687
Shuman, J., Giles, T. X., Carroll, L., Tabata, K., Powers, A., Suh, S.-J. and Silo-Suh, L. 2018. Transcriptome analysis of a
Pseudomonas aeruginosa sn-glycerol-3-phosphate dehydrogenase mutant reveals a disruption in bioenergetics.
Microbiology. 164:551-562.
Song, Y.-R., Hwang, I. S. and Oh, C.-S. 2020. Natural variation in virulence of
Acidovorax citrulli isolates that cause bacterial fruit blotch in watermelon, depending on infection routes.
Plant Pathol. J. 36:29-42.
Sowell, G. J and Schaad, N. W. 1979. Pseudomonas pseudoalcaligenes subsp. citrulli on watermelon: seed transmission and resistance of plant introductions. Plant Dis. Rep. 63:437-441.
Spoering, A. L., Vulić, M. and Lewis, K. 2006. GlpD and PlsB participate in persister cell formation in
Escherichia coli.
J. Bacteriol. 188:5136-5144.
Tian, M., Sasvari, Z., Gonzalez, P. A., Friso, G., Rowland, E., Liu, X. M., van Wijk, K. J., Nagy, P. D. and Klessig, D. F. 2015. Salicylic acid inhibits the replication of tomato bushy stunt virus by directly targeting a host component in the replication complex.
Mol. Plant-Microbe Interact. 28:379-386.
Wei, Y., Shen, W., Dauk, M., Wang, F., Selvaraj, G. and Zou, J. 2004. Targeted gene disruption of glycerol-3-phosphate dehydrogenase in
Colletotrichum gloeosporioides reveals evidence that glycerol is a significant transferred nutrient from host plant to fungal pathogen.
J. Biol. Chem. 279:429-435.
Yeh, J. I., Chinte, U. and Du, S. 2008. Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism.
Proc. Natl. Acad. Sci. U. S. A. 105:3280-3285.