Bai, Y., Kissoudis, C., Yan, Z., Visser, R. G. F. and van der Linden, G. 2018. Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress.
Plant J. 93:781-793.
Chakraborty, K., Bhaduri, D., Meena, H. N. and Kalariya, K. 2016. External potassium (K
+) application improves salinity tolerance by promoting Na
+-exclusion, K
+-accumulation and osmotic adjustment in contrasting peanut cultivars.
Plant Physiol. Biochem. 103:143-153.
Choudhary, D. K., Kasotia, A., Jain, S., Vaishnav, A., Kumari, S., Sharma, K. P. and Varma, A. 2015. Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses.
J. Plant Growth Regul. 35:276-300.
Dangl, J. L. and Jones, J. D. 2001. Plant pathogens and integrated defence responses to infection.
Nature. 411:826-833.
Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G. and Schroeder, J. I. 2014. Plant salt-tolerance mechanisms.
Trends Plant Sci. 19:371-379.
Egamberdieva, D. 2009. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat.
Acta Physiol. Plant. 31:861-864.
Egamberdieva, D. 2011.
Pseudomonas chlororaphis: a salttolerant bacterial inoculant for plant growth stimulation under saline soil conditions.
Acta Physiol. Plant. 34:751-756.
Etesami, H. and Glick, B. R. 2020. Halotolerant plant growth- promoting bacteria: prospects for alleviating salinity stress in plants.
Environ. Exp. Bot. 178:104124
Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J. and Vicente, O. 2015. Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production.
Front. Plant Sci. 6:978
Flowers, T. J. 2004. Improving crop salt tolerance.
J. Exp. Bot. 55:307-319.
Flowers, T. J. and Yeo, A. R. 1995. Breeding for salinity resistance in crop plants: where next?
Aust. J. Plant Physiol. 22:875-884.
Glick, B. R. 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase.
FEMS Microbiol. Lett. 251:1-7.
Haas, D. and Défago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads.
Nat. Rev. Microbiol. 3:307-319.
Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S. E. and Shabala, S. 2011. Ionic and osmotic relations in quinoa (
Chenopodium quinoa Willd.) plants grown at various salinity levels.
J. Exp. Bot. 62:185-193.
Havaux, M. 2014. Carotenoid oxidation products as stress signals in plants.
Plant J. 79:597-606.
Ilangumaran, G. and Smith, D. L. 2017. Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective.
Front. Plant Sci. 8:1768
Jamil, M., Rehman, S. U., Lee, K. J., Kim, J. M., Kim, H.-S. and Rha, E. S. 2007. Salinity reduced growth PS2 photochemistry and chlorophyll content in radish.
Sci. Agric. 64:111-118.
Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., Łukasik, I., Goltsev, V. and Ladle, R. J. 2016. Chlorophyll
a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions.
Acta Physiol. Plant. 38:102
Kumar, A. and Verma, J. P. 2018. Does plant-Microbe interaction confer stress tolerance in plants: a review?
Microbiol. Res. 207:41-52.
Kumar, D. eds. by M. Ashraf and P. J. C. Harris, 2005. Breeding for drought resistance. In: Abiotic stresses: plant resistance through breeding and molecular approaches, Food Products Press, New York, NY, USA. 145-147.
Lane, D. J. eds. by E. Stackebrandt and M. Goodfellow, 1991. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics, Wiley, Chichester, UK. 115-175.
Li, H.-W., Zang, B.-S., Deng, X.-W. and Wang, X.-P. 2011. Overexpression of the trehalose-6-phosphate synthase gene
OsTPS1 enhances abiotic stress tolerance in rice.
Planta. 234:1007-1018.
Li, M., Hong, C. Y., Yan, W. X., Chao, Z. S., Gang, Y. C., Ling, D. J., Kui, Z. X., Qin, X. J., Liang, Z. M. and He, M. M. 2017.
Bacillus zanthoxyli sp. nov., a novel nematicidal bacterium isolated from Chinese red pepper (
Zanthoxylum bungeanum Maxim) leaves in China.
Antonie Van Leeuwenhoek. 110:1179-1187.
Liang, Z. S., Ding, Z. R. and Wang, S. T. R. 1992. Study on type of water stress adaptation in both Brassica napus and B. juncea L. species. Acta Bot. 12:38-45.
Mahajan, S. and Tuteja, N. 2005. Cold, salinity and drought stresses: an overview.
Arch. Biochem. Biophys. 444:139-158.
Majeed, A., Muhammad, Z. and Ahmad, H. 2018. Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops.
Plant Cell Rep. 37:1599-1609.
Miller, R. N. G., Alves, G. S. and Van Sluys, M.-A. 2017. Plant immunity: unravelling the complexity of plant responses to biotic stresses.
Ann. Bot. 119:681-687.
Mittal, S., Kumari, N. and Sharma, V. 2012. Differential response of salt stress on
Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes.
Plant Physiol. Biochem. 54:17-26.
Mungala, A. J., Radhakrishnan, T. and Dobaria, J. R. 2008. In vitro screening of 123 Indian peanut cultivars for sodium chloride induced salinity tolerance. World J. Agric. Sci. 4:574-582.
Munns, R. and Gilliham, M. 2015. Salinity tolerance of crops - what is the cost?
New Phytol. 208:668-673.
Muñoz-Mayor, A., Pineda, B., Garcia-Abellán, J. O., Antón, T., Garcia-Sogo, B., Sanchez-Bel, P., Flores, F. B., Atarés, A., Angosto, T., Pintor-Toro, J. A., Moreno, V. and Bolarin, M. C. 2012. Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato.
J. Plant Physiol. 169:459-468.
Polonenko, D. R., Mayfield, C. I. and Dumbroff, E. B. 1981. Microbial responses to salt-induced osmotic stress.
Plant Soil. 59:269-285.
Qu, L., Huang, Y., Zhu, C., Zeng, H., Shen, C., Liu, C., Zhao, Y. and Pi, E. 2016. Rhizobia-inoculation enhances the soybean's tolerance to salt stress.
Plant Soil. 400:209-222.
Rathinasabapathi, B. 2000. Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways.
Ann. Bot. 86:709-716.
Rouphael, Y. and Colla, G. 2018. Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture.
Front. Plant Sci. 9:1655
Ruan, C.-J., da Silva, J. A. T., Mopper, S., Qin, P. and Lutts, S. 2010. Halophyte improvement for a salinized world.
Crit. Rev. Plant Sci. 29:329-359.
Sarkar, A., Ghosh, P. K., Pramanik, K., Mitra, S., Soren, T., Pandey, S., Mondal, M. H. and Maiti, T. K. 2018. A halotolerant
Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress.
Res. Microbiol. 169:20-32.
Singh, A. K. and Dubey, R. S. 1995. Changes in chlorophyll a and b contents and activities of photosystems 1 and 2 in rice seedlings induced by NaCl. Photosynthetica. 31:489-499.
Thurston, H. D. 1992. Sustainable practices for plant disease management in traditional farming systems. Westview Press, Boulder, CO, USA. 280.
Turan, S. and Tripathy, B. C. 2015. Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings.
Physiol. Plant. 153:477-491.
Ullah, A., Heng, S., Munis, M. F. H., Fahad, S. and Yang, X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review.
Environ. Exp. Bot. 117:28-40.
Ullah, S., Hussain, M. B., Khan, M. Y. and Asghar, H. N. eds. by D. P. Singh, H. B. Singh and R. Prabha, 2017. Ameliorating salt stress in crops through plant growthpromoting bacteria. In:
Plant-microbe interactions in agroecological perspectives, Springer, Singapore. 549-575.
Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S. and Maggio, A. 2017. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants.
Chem. Biol. Technol. Agric. 4:5
Walters, D., Walsh, D., Newton, A. and Lyon, G. 2005. Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors.
Phytopathology. 95:1368-1373.
Yoo, S.-J., Kim, J. W., Kim, S. T., Weon, H.-Y., Song, J. and Sang, M. K. 2019. Effect of
Bacillus mesonae H20-5 on fruit yields and quality in protected cultivation.
Res. Plant Dis. 25:84-88.