Adeniji, A. A., Aremu, O. S. and Babalola, O. O. 2019. Selecting lipopeptide-producing,
Fusarium-suppressing
Bacillus spp.: metabolomic and genomic probing of
Bacillus velezensis NWUMFkBS10.5.
MicrobiologyOpen. 8:e00742.
Ahmed, E. and Holmström, S. J. 2014. Siderophores in environmental research: roles and applications.
Microb. Biotechnol. 7:196-208.
Bandara, W. M. M., Seneviratne, G. and Kulasooriya, S. A. 2006. Interactions among endophytic bacteria and fungi: effects and potentials.
J. Biosci. 31:645-650.
Barbero, G. F., Liazid, A., Azaroual, L., Palma, M. and Barroso, C. G. 2016. Capsaicinoid contents in peppers and pepper-related spicy foods.
Int. J. Food Prop. 19:485-493.
Barbero, G. F., Ruiz, A. G., Liazid, A., Palma, M., Vera, J. C. and Barroso, C. G. 2014. Evolution of total and individual capsaicinoids in peppers during ripening of the Cayenne pepper plant (
Capsicum annuum L.).
Food Chem. 153:200-206.
Chen, L., Shi, H., Heng, J., Wang, D. and Bian, K. 2019. Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte
Bacillus velezensis LDO2.
Microbiol. Res. 218:41-48.
Chun, J. and Bae, K. S. 2000. Phylogenetic analysis of
Bacillus subtilis and related taxa based on partial
gyrA gene sequences.
Antonie van Leeuwenhoek. 78:123-127.
Cho, K. M., Hong, S. Y., Lee, S. M., Kim, Y. H., Kahng, G. G., Lim, Y. P., Kim, H. and Yun, H. D. 2007. Endophytic bacterial communities in ginseng and their antifungal activity against pathogens.
Microb. Ecol. 54:341-351.
de Souza, R., Ambrosini, A. and Passaglia, L. M. P. 2015. Plant growth-promoting bacteria as inoculants in agricultural soils.
Genet. Mol. Biol. 38:401-419.
Dias, J. S. 2012. Nutritional quality and health benefits of vegetables: a review.
Food Nutr. Sci. 3:1354-1374.
Fan, B., Blom, J., Klenk, H.-P. and Borriss, R. 2017.
Bacillus amyloliquefaciens,
Bacillus velezensis, and
Bacillus siamensis form an "Operational group
B. subtilis species complex.
Front. Microbiol. 8:22.
Fazle Rabbee, M. and Baek, K.-H. 2020. Antimicrobial activities of lipopeptides and polyketides of
Bacillus velezensis for agricultural applications.
Molecules. 25:4973.
Glick, B. R. 2012. Plant growth-promoting bacteria: mechanisms and applications.
Scientifica. 2012:963401.
Grady, E. N., MacDonald, J., Ho, M. T., Weselowski, B., McDowell, T., Solomon, O., Renaud, J. and Yuan, Z.-C. 2019. Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium
Bacillus velezensis 9D-6.
BMC Microbiol. 19:5.
Han, J.-H., Park, G.-C. and Kim, K. S. 2017. Antagonistic evaluation of
Chromobacterium sp. JH7 for biological control of ginseng root rot caused by Cylindrocarpon destructans.
Mycobiology. 45:370-378.
Han, J.-H., Shim, H., Shin, J.-H. and Kim, K. S. 2015. Antagonistic activities of Bacillus spp. strains isolated from tidal flat sediment towards anthracnose pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea. Plant Pathol. J. 31:165-175.
Jadhav, H. P. and Sayyed, R. Z. 2016. Hydrolytic enzymes of rhizospheric microbes in crop protection. MOJ Cell Sci. Rep. 3:135-136.
Jiang, C.-H., Liao, M.-J., Wang, H.-K., Zheng, M.-Z., Xu, J.-J. and Guo, J.-H. 2018.
Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by
Botrytis cinerea.
Biol. Control. 126:147-157.
Kang, X., Zhang, W., Cai, X., Zhu, T., Xue, Y. and Liu, C. 2018.
Bacillus velezensis CC09: a potential 'Vaccine' for controlling wheat diseases.
Mol. Plant-Microbe Interact. 31:623-632.
Khan, A., Singh, P. and Srivastava, A. 2018. Synthesis, nature and utility of universal iron chelator - Siderophore: a review.
Microbiol. Res. 212-213:103-111.
Khan, M. S., Gao, J., Chen, X., Zhang, M., Yang, F., Du, Y., Moe, T. S., Munir, I., Xue, J. and Zhang, X. 2020. The endophytic bacteria
Bacillus velezensis Lle-9, isolated from
Lilium leucanthum, harbors antifungal activity and plant growth-promoting effects.
J. Microbiol. Biotechnol. 30:668-680.
Kim, J.-O., Shin, J.-H., Gumilang, A., Chung, K., Choi, K. Y. and Kim, K. S. 2016. Effectiveness of different classes of fungicides on
Botrytis cinerea causing gray mold on fruit and vegetables.
Plant Pathol. J. 32:570-574.
Kim, J.-T., Park, S.-Y., Choi, W.-B., Lee, Y.-H. and Kim, H.-T. 2008. Characterization of
Colletotrichum isolates causing anthracnose of pepper in Korea.
Plant Pathol. J. 24:17-23.
Kim, W. G. and Cho, W. D. 2003. Occurrence of sclerotinia rot in solanaceous crops caused by
Sclerotinia spp.
Mycobiology. 31:113-118.
Kraft, K. H., Brown, C. H., Nabhan, G. P., Luedeling, E., Luna Ruiz, J. J., Coppens d'Eeckenbrugge, G., Hijmans, R. J. and Gepts, P. 2014. Multiple lines of evidence for the origin of domesticated chili pepper,
Capsicum annuum, in Mexico.
Proc. Natl. Acad. Sci. U. S. A. 111:6165-6170.
Kwon, D. Y., Jang, D.-J., Yang, H. J. and Chung, K. R. 2014. History of Korean
gochu,
gochujang, and kimchi.
J. Ethn. Foods. 1:3-7.
Laskaridou-Monnerville, A. 1999. Determination of capsaicin and dihydrocapsaicin by micellar electrokinetic capillary chromatography and its application to various species of
Capsicum, Solanaceae.
J. Chromatogr. A. 838:293-302.
Li, F.-Z., Zeng, Y.-J., Zong, M.-H., Yang, J.-G. and Lou, W.-Y. 2020. Bioprospecting of a novel endophytic
Bacillus velezensis FZ06 from leaves of
Camellia assamica: production of three groups of lipopeptides and the inhibition against food spoilage microorganisms.
J. Biotechnol. 323:42-53.
Li, X., Geng, X., Xie, R., Fu, L., Jiang, J., Gao, L. and Sun, J. 2016. The endophytic bacteria isolated from elephant grass (
Pennisetum purpureum Schumach) promote plant growth and enhance salt tolerance of Hybrid Pennisetum.
Biotechnol. Biofuels. 9:190.
Luna-Bulbarela, A., Tinoco-Valencia, R., Corzo, G., Kazuma, K., Konno, K., Galindo, E. and Serrano-Carreón, L. 2018. Effects of bacillomycin D homologues produced by
Bacillus amyloliquefaciens 83 on growth and viability of
Colletotrichum gloeosporioides at different physiological stages.
Biol. Control. 127:145-154.
Mesnage, R., Defarge, N., Spiroux de Vendômois, J. S. and Séralini, G.-E. 2014. Major pesticides are more toxic to human cells than their declared active principles.
Biomed. Res. Int. 2014:179691.
Oo, M. M., Lim, G., Jang, H. A. and Oh, S.-K. 2017. Characterization and pathogenicity of new record of anthracnose on various chili varieties caused by
Colletotrichum scovillei in Korea.
Mycobiology. 45:184-191.
Park, H.-K., Shim, S.-S., Kim, S.-Y., Park, J.-H., Park, S.-E., Kim, H.-J., Kang, B.-C. and Kim, C.-M. 2005. Molecular analysis of colonized bacteria in a human newborn infant gut.
J. Microbiol. 43:345-353.
Perfect, S. E., Hughes, H. B., O’Connell, R. J. and Green, J. R. 1999.
Colletotrichum: a model genus for studies on pathology and fungal-plant interactions.
Fungal Genet. Biol. 27:186-198.
Rabbee, M. F., Ali, M. S., Choi, J., Hwang, B. S., Jeong, S. C. and Baek, K.-H. 2019.
Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes.
Molecules. 24:1046.
Rajkumar, M., Lee, K. J. and Freitas, H. 2008. Effects of chitin and salicylic acid on biological control activity of
Pseudomonas spp. against damping off of pepper.
S. Afr. J. Bot. 74:268-273.
Rooney, A. P., Price, N. P., Ehrhardt, C., Swezey, J. L. and Bannan, J. D. 2009. Phylogeny and molecular taxonomy of the
Bacillus subtilis species complex and description of
Bacillus subtilis subsp. inaquosorum subsp. nov.
Int. J. Syst. Evol. Microbiol. 59:2429-2436.
Sanatombi, K. and Sharma, G. J. 2008. Capsaicin content and pungency of different Capsicum spp. cultivars. Not. Bot. Hort. Agrobot. Cluj. 36:89-90.
Saxena, A., Raghuwanshi, R., Gupta, V. K. and Singh, H. B. 2016. Chilli anthracnose: the epidemiology and management.
Front. Microbiol. 7:1527.
Shahid, I., Han, J., Hanooq, S., Malik, K. A., Borchers, C. H. and Mehnaz, S. 2021. Profiling of metabolites of
Bacillus spp. and their application in sustainable plant growth promotion and biocontrol.
Front. Sustain. Food Syst. 5:605195.
Shin, J.-H., Han, J.-H., Park, H.-H., Fu, T. and Kim, K. S. 2019. Optimization of polyethylene glycol-mediated transformation of the pepper anthracnose pathogen
Colletotrichum scovillei to develop an applied genomics approach.
Plant Pathol. J. 35:575-584.
Sokol, P. A., Ohman, D. E. and Iglewski, B. H. 1979. A more sensitive plate assay for detection of protease production by
Pseudomanas aeruginosa.
J. Clin. Microbiol. 9:538-540.
Stenberg, J. A., Heil, M., Åhman, I. and Björkman, C. 2015. Optimizing crops for biocontrol of pests and disease.
Trends Plant Sci. 20:698-712.
Stein, T. 2005.
Bacillus subtilis antibiotics: structures, syntheses and specific functions.
Mol. Microbiol. 56:845-857.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Mol. Biol. Evol. 28:2731-2739.
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.
Nucleic Acids Res. 25:4876-4882.
Ullah, A., Nisar, M., Ali, H., Hazrat, A., Hayat, K., Keerio, A. A., Ihsan, M., Laiq, M., Ullah, S., Fahad, S., Khan, A., Khan, A. H., Akbar, A. and Yang, X. 2019. Drought tolerance improvement in plants: an endophytic bacterial approach.
Appl. Microbiol. Biotechnol. 103:7385-7397.
Vagelas, I., Papachatzis, A., Kalorizou, H. and Wogiatzi, E. 2009. Biological control of Botrytis fruit rot (
Gray Mold) on strawberry and red pepper fruits by olive oil mill wastewater.
Biotechnol. Biotechnol. Equip. 23:1489-1491.
Wang, C., Zhao, D., Qi, G., Mao, Z., Hu, X., Du, B., Liu, K. and Ding, Y. 2020. Effects of
Bacillus velezensis FKM10 for promoting the growth of
Malus hupehensis Rehd. and inhibiting
Fusarium verticillioides.
Front. Microbiol. 10:2889.
Wellman, R. H. 1977. Problems in development, registration, and use of fungicides.
Annu. Rev. Phytopathol. 15:153-163.
Wisniewski, M., Droby, S., Norelli, J., Liu, J. and Schena, L. 2016. Alternative management technologies for postharvest disease control: the journey from simplicity to complexity.
Postharvest Biol. Technol. 122:3-10.