Ahn, I.-P., Kim, S. and Lee, Y.-H. 2005. Vitamin B1 functions as an activator of plant disease resistance.
Plant Physiol. 138:1505-1515.
Asselbergh, B., Curvers, K., França, S. C., Audenaert, K., Vuylsteke, M., Van Breusegem, F. and Höfte, M. 2007. Resistance to
Botrytis cinerea in
sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis.
Plant Physiol. 144:1863-1877.
Barral, B., Chillet, M., Minier, J., Léchaudel, M. and Schorr-Galindo, S. 2017. Evaluating the response to
Fusarium ananatum inoculation and antifungal activity of phenolic acids in pineapple.
Fungal Biol. 121:1045-1053.
Barry, C. S., Blume, B., Bouzayen, M., Copper, W., Hamilton, A. J. and Grierson, D. 1996. Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato.
Plant J. 9:525-535.
Ben-Jabeur, M., Ghabri, E., Myriam, M. and Hamada, W. 2015. Thyme essential oil as a defense inducer of tomato against gray mold and Fusarium wilt.
Plant Physiol. Biochem. 94:35-40.
Blume, B. and Grierson, D. 1997. Expression of ACC oxidase promoter-GUS fusions in tomato and
Nicotiana plumbaginifolia regulated by developmental and environmental stimuli.
Plant J. 12:731-746.
Borges, A. A., Cools, H. J. and Lucas, J. A. 2003. Menadione sodium bisulphite: a novel plant defence activator which enhances local and systemic resistance to infection by
Leptosphaeria maculans in oilseed rape.
Plant Pathol. 52:429-436.
Borges, A. A., Dobon, A., Expósito-Rodríguez, M., Jiménez-Arias, D., Borges-Pérez, A., Casañas-Sánchez, V., Pérez, J. A., Luis, J. C. and Tornero, P. 2009. Molecular analysis of menadione-induced resistance against biotic stress in Arabidopsis.
Plant Biotechnol. J. 7:744-762.
Borges, A. A., Jiménez-Arias, D., Expósito-Rodríguez, M., Sandalio, L. M. and Pérez, J. A. 2014a. Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms.
Front. Plant Sci. 5:642
Á, V., Saraiva, R. M. and Maffia, L. A. 2014b. Key factors to inoculate
Botrytis cinerea in tomato plants.
Summa Phytopathol. 40:221-225.
Botanga, C. J., Bethke, G., Chen, Z., Gallie, D. R., Fiehn, O. and Glazebrook, J. 2012. Metabolite profiling of
Arabidopsis inoculated with
Alternaria brassicicola reveals that ascorbate reduces disease severity.
Mol. Plant-Microbe Interact. 25:1628-1638.
Boukaew, S., Prasertsan, P., Troulet, C. and Bardin, M. 2017. Biological control of tomato gray mold caused by
Botrytis cinerea by using
Streptomyces spp.
BioControl. 62:793-803.
Carisse, O. and Van der Heyden, H. 2015. Relationship of airborne
Botrytis cinerea conidium concentration to tomato flower and stem infections: a threshold for de-leafing operations.
Plant Dis. 99:137-142.
Chen, X., Wang, Y., Gao, Y., Gao, T. and Zhang, D. 2019. Inhibitory abilities of
Bacillus isolates and their culture filtrates against the gray mold caused by
Botrytis cinerea on postharvest fruit.
Plant Pathol. J. 35:425-436.
Díaz, J., ten Have, A. and van Kan, J. A. L. 2002. The role of ethylene and wound signaling in resistance of tomato to
Botrytis cinerea.
Plant Physiol. 129:1341-1351.
Du, M., Zhao, J., Tzeng, D. T. W., Liu, Y., Deng, L., Yang, T., Zhai, Q., Wu, F., Huang, Z., Zhou, M., Wang, Q., Chen, Q., Zhong, S., Li, C.-B. and Li, C. 2017. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonatemediated plant immunity in tomato.
Plant Cell. 29:1883-1906.
Egan, M. J., Wang, Z.-Y., Jones, M. A., Smirnoff, N. and Talbot, N. J. 2007. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease.
Proc. Natl. Acad. Sci. U. S. A. 104:11772-11777.
Elad, Y. 1990. Production of ethylene by tissues of tomato, pepper, French-bean and cucumber in response to infection by
Botrytis cinerea.
Physiol. Mol. Plant Pathol. 36:277-287.
Elad, Y., Köhl, J. and Fokkema, N. J. 1994. Control of infection and sporulation of
Botrytis cinerea on bean and tomato by saprophytic bacteria and fungi.
Eur. J. Plant Pathol. 100:315-336.
El Oirdi, M., El Rahman, T. A., Rigano, L., El Hadrami, A., Rodriguez, M. C., Daayf, F., Vojnov, A. and Bouarab, K. 2011.
Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato.
Plant Cell. 23:2405-2421.
Fan, F., Li, N., Li, G. Q. and Luo, C. X. 2016. Occurrence of fungicide resistance in
Botrytis cinerea from greenhouse tomato in Hubei province, China.
Plant Dis. 100:2414-2421.
Gao, P., Qin, J., Li, D. and Zhou, S. 2018. Inhibitory effect and possible mechanism of a
Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by
Botrytis cinerea.
PLoS ONE. 13:e0190932.
Govrin, E. M. and Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen
Botrytis cinerea.
Curr. Biol. 10:751-757.
Harel, T. M., Mehari, Z. H., Rav-David, D. and Elad, Y. 2014. Systemic resistance to gray mold induced in tomato by benzothiadiazole and
Trichoderma harzianum T39.
Phytopathology. 104:150-157.
Herrera-Téllez, V. I., Cruz-Olmedo, A. K., Plasencia, J., Gavilanes-Ruíz, M., Arce-Cervantes, O., Hernández-León, S. and Saucedo-García, M. 2019. The protective effect of
Trichoderma asperellum on tomato plants against
Fusarium oxysporum and
Botrytis cinerea diseases involves inhibition of reactive oxygen species production.
Int. J. Mol. Sci. 20:2007
Hong, J. K., Jo, Y. S., Ryoo, D. H., Jung, J. H., Kwon, H. J., Lee, Y. H., Chang, S. W. and Park, C.-J. 2018. Alternaria spots in tomato leaves differently delayed by four plant essential oil vapours.
Res. Plant Dis. 24:292-301.
Hong, J. K., Kim, H. J., Jung, H., Yang, H. J., Kim, D. H., Sung, C. H., Park, C.-J. and Chang, S. W. 2016. Differential control efficacies of vitamin treatments against bacterial wilt and grey mould diseases in tomato plants.
Plant Pathol. J. 32:469-480.
Houben, M. and Van de Poel, B. 2019. 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO): the enzyme that makes the plant hormone ethylene.
Front. Plant Sci. 10:695
Jacometti, M. A., Wratten, S. D. and Walter, M. 2010. Review: alternatives to synthetic fungicides for
Botrytis cinerea management in vineyards.
Aust. J. Grape Wine Res. 16:154-172.
Jiménez-Arias, D., Borges, A. A., Luis, J. C., Valdés, F., Sandalio, L. M. and Pérez, J. A. 2015a. Priming effect of menadione sodium bisulphite against salinity stress in
Arabidopsis involves epigenetic changes in genes controlling proline metabolism.
Environ. Exp. Bot. 120:23-30.
Jiménez-Arias, D., Pérez, J. A., Luis, J. C., Martín-Rodríguez, V., Valdés-González, F. and Borges, A. A. 2015b. Treating seeds in menadione sodium bisulphite primes salt tolerance in Arabidopsis by inducing an earlier plant adaptation.
Environ. Exp. Bot. 109:23-30.
Lee, Y. H., Kim, Y. J., Moon, J. Y., Kim, H. J., Park, J. M., Hwang, I. S. and Hong, J. K. 2019. Response of two Arabidopsis ecotypes Columbia-0 and Dijon-G to necrotrophic and biotrophic pathogens.
Biol. Plant. 63:654-661.
Leyva, M. O., Vicedo, B., Finiti, I., Flors, V., Del Amo, G., Real, M. D., García-Agustín, P. and González-Bosch, C. 2008. Preventive and post-infection control of
Botrytis cinerea in tomato plants by hexanoic acid.
Plant Pathol. 57:1038-1046.
Li, L., Li, C., Lee, G. I. and Howe, G. A. 2002. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato.
Proc. Natl. Acad. Sci. U. S. A. 99:6416-6421.
Li, X., Zhang, Y., Huang, L., Ouyang, Z., Hong, Y., Zhang, H., Li, D. and Song, F. 2014. Tomato
SlMKK2 and
SlMKK4 contribute to disease resistance against
Botrytis cinerea.
BMC Plant Biol. 14:166
Luna, E., Beardon, E., Ravnskov, S., Scholes, J. and Ton, J. 2016. Optimizing chemically induced resistance in tomato against
Botrytis cinerea.
Plant Dis. 100:704-710.
Mbengue, M., Navaud, O., Peyraud, R., Barascud, M., Badet, T., Vincent, R., Barbacci, A. and Raffaele, S. 2016. Emerging trends in molecular interactions between plants and the broad host range fungal pathogens
Botrytis cinerea and
Sclerotinia sclerotiorum.
Front. Plant Sci. 7:422
Meng, L., Höfte, M. and Van Labeke, M.-C. 2019. Leaf age and light quality influence the basal resistance against
Botrytis cinerea in strawberry leaves.
Environ. Exp. Bot. 157:35-45.
Mónaco, C., Dal Bello, G., Rollán, M. C., Ronco, L., Lampugnani, G., Arteta, N., Abramoff, C., Aprea, A., Larran, S. and Stocco, M. 2009. Biological control of
Botrytis cinerea on tomato using naturally occurring fungal antagonists.
Arch. Phytopathol. Plant Protect. 42:729-737.
Nambeesan, S., AbuQamar, S., Laluk, K., Mattoo, A. K., Mickelbart, M. V., Ferruzzi, M. G., Mengiste, T. and Handa, A. K. 2012. Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to
Botrytis cinerea in tomato.
Plant Physiol. 158:1034-1045.
Nikolaou, E., Agrafioti, I., Stumpf, M., Quinn, J., Stansfield, I. and Brown, A. J. P. 2009. Phylogenetic diversity of stress signalling pathway in fungi.
BMC Evol. Biol. 9:44
Pietrowska, E., Różalska, S., Kaźmierczak, A., Nawrocka, J. and Małolepsza, U. 2015. Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures -
Botrytis cinerea interaction.
Protoplasma. 252:307-319.
Petrasch, S., Knapp, S. J., van Kan, J. A. L. and Blanco-Ulate, B. 2019. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen
Botrytis cinerea.
Mol. Plant Pathol. 20:877-892.
Puthoff, D. P., Holzer, F. M., Perring, T. M. and Walling, L. L. 2010. Tomato pathogenesis-related protein genes are expressed in response to
Trialeurodes vaporariorum and
Bemisia tabaci biotype B feeding.
J. Chem. Ecol. 36:1271-1285.
Rossi, F. R., Krapp, A. R., Bisaro, F., Maiale, S. J., Pieckenstain, F. L. and Carrillo, N. 2017. Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus
Botrytis cinerea.
Plant J. 92:761-773.
Saito, S., Michailides, T. J. and Xiao, C. L. 2019. Fungicideresistant phenotypes in
Botrytis cinerea populations and their impact on control of gray mold on stored table grapes in California.
Eur. J. Plant Pathol. 154:203-213.
Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., Van Breusegem, F., Eberl, L., Hartmann, A. and Langebartels, C. 2006. Induction of systemic resistance in tomato by
N-acyl-L-homoserine lactoneproducing rhizosphere bacteria.
Plant Cell Environ. 29:909-918.
Sivakumaran, A., Akinyemi, A., Mandon, J., Cristescu, S. M., Hall, M. A., Harren, F. J. M. and Mur, L. A. J. 2016. ABA suppresses
Botrytis cinerea elicited NO production in tomato to influence H
2O
2 generation and increase host susceptibility.
Front. Plant Sci. 7:709
Soylu, E. M., Kurt, Ş. and Soylu, S. 2010.
In vitro and
in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent
Botrytis cinerea.
Int. J. Food Microbiol. 143:183-189.
Spotts, R. A., Wallis, K. M., Serdani, M., O'Gorman, D. T. and Sholberg, P. L. 2008. Methodology for determining relationships between inoculum concentration of
Botrytis cinerea and
Penicillium expansum and stem end decay of pear fruit.
Plant Dis. 92:451-455.
Steel, C. C., Blackman, J. W. and Schmidtke, L. M. 2013. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults.
J. Agric. Food Chem. 61:5189-5206.
Sung, C. H. and Hong, J. K. 2010. Sodium nitroprusside mediates seedling development and attenuation of oxidative stresses in Chinese cabbage.
Plant Biotechnol. Rep. 4:243-251.
Tornero, P., Conejero, V. and Vera, P. 1994. A gene encoding a novel isoform of the PR-1 protein family from tomato is induced upon viroid infection.
Mol. Gen. Genet. 243:47-53.
Tornero, P., Gadea, J., Conejero, V. and Vera, P. 1997. Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development.
Mol. Plant-Microbe Interact. 10:624-634.
Utkhede, R. S. and Mathur, S. 2006. Preventive and curative biological treatments for control of
Botrytis cinerea stem canker of greenhouse tomatoes.
BioControl. 51:363-373.
Vicedo, B., Flors, V., Leyva, M., Finiti, I., Kravchuk, Z., Real, M. D., García-Agustín, P. and González-Bosch, C. 2009. Hexanoic acid-induced resistance against
Botrytis cinerea in tomato plants.
Mol. Plant-Microbe Interact. 22:1455-1465.
Williamson, B., Tudzynski, B., Tudzynski, P. and van Kan, J. A. L. 2007.
Botrytis cinerea: the cause of grey mould disease.
Mol. Plant Pathol. 8:561-580.
Yu, P.-L., Chen, L.-H. and Chung, K.-R. 2016. How the pathogenic fungus
Alternaria alternata copes with stress via the response regulators SSK1 and SHO1.
PLoS ONE. 11:e0149153.