Bedard, K. and Krause, K.-H. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology.
Physiol. Rev. 87:245-313.
Cano-Domínguez, N., Álvarez-Delfín, K., Hansberg, W. and Aguirre, J. 2008. NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in
Neurospora crassa
.
Eukaryot. Cell 7:1352-1361.
Chi, M.H., Park, S.Y. and Lee, Y.H. 2009. A quick and safe method for fungal DNA extraction.
Plant Pathol. J. 25:108-111.
Choi, J., Kim, Y., Kim, S., Park, J. and Lee, Y.-H. 2009.
MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of
Magnaporthe oryzae
.
Fungal Genet. Biol. 46:243-254.
Dagdas, Y.F., Yoshino, K., Dagdas, G., Ryder, L.S., Bielska, E., Steinberg, G. and Talbot, N.J. 2012. Septin-mediated plant cell invasion by the rice blast fungus,
Magnaporthe oryzae
.
Science 336:1590-1595.
Diéguez-Uribeondo, J., Förster, H. and Adaskaveg, J.E. 2003. Digital image analysis of internal light spots of appressoria of
Colletotrichum acutatum
.
Phytopathology 93:923-930.
Fu, T., Han, J.-H., Shin, J.-H., Song, H., Ko, J., Lee, Y.-H., Kim, K.-T. and Kim, K.S. 2021. Homeobox transcription factors are required for fungal development and the suppression of host defense mechanisms in the
Colletotrichum scovillei-pepper pathosystem.
mBio 12:e0162021.
Fu, T., Park, G.-C., Han, J.H., Shin, J.-H., Park, H.-H. and Kim, K.S. 2019.
MoRBP9 encoding a Ran-binding protein microtubule-organizing center is required for asexual reproduction and infection in the rice blast pathogen
Magnaporthe oryzae
.
Plant Pathol. J. 35:564-574.
Fu, T., Shin, J.-H., Lee, N.-H., Lee, K.H. and Kim, K.S. 2022. Mitogen-activated protein kinase CsPMK1 is essential for pepper fruit anthracnose by
Colletotrichum scovillei
.
Front. Microbiol. 13:770119.
Galhano, R., Illana, A., Ryder, L.S., Rodríguez-Romero, J., Demuez, M., Badaruddin, M., Martinez-Rocha, A.L., Soanes, D.M., Studholme, D.J., Talbot, N.J. and Sesma, A. 2017. Tpc1 is an important Zn(II)
2Cys
6 transcriptional regulator required for polarized growth and virulence in the rice blast fungus.
PLoS Pathog. 13:e1006516.
Giacomin, R.M., Ruas, C.D.F., Moreira, A.F.P., Guidone, G.H.M., Baba, V.Y., Rodrigues, R. and Gonçalves, L.S.A. 2020. Inheritance of anthracnose resistance (
Colletotrichum scovillei) in ripe and unripe
Capsicum annuum fruits.
J. Phytopathol. 168:184-192.
Han, J.-H., Chon, J.-K., Ahn, J.-H., Choi, I.-Y., Lee, Y.-H. and Kim, K.S. 2016. Whole genome sequence and genome annotation of
Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea.
Genom. Data 8:45-46.
Han, J.-H., Shin, J.-H., Lee, Y.-H. and Kim, K.S. 2018. Distinct roles of the
YPEL gene family in development and pathogenicity in the ascomycete fungus
Magnaporthe oryzae
.
Sci. Rep. 8:14461.
Kayano, Y., Tanaka, A., Akano, F., Scott, B. and Takemoto, D. 2013. Differential roles of NADPH oxidases and associated regulators in polarized growth, conidiation and hyphal fusion in the symbiotic fungus
Epichloë festucae
.
Fungal Genet. Biol. 56:87-97.
Kim, S., Park, M., Yeom, S.-I., Kim, Y.-M., Lee, J.M., Lee, H.-A., Seo, E., Choi, J., Cheong, K., Kim, K.-T., Jung, K., Lee, G.-W., Oh, S.-K., Bae, C., Kim, S.-B., Lee, H.-Y., Kim, S.-Y., Kim, M.-S., Kang, B.-C., Jo, Y.D., Yang, H.-B., Jeong, H.-J., Kang, W.-H., Kwon, J.-K., Shin, C., Lim, J.Y., Park, J.H., Huh, J.H., Kim, J.-S., Kim, B.-D., Cohen, O., Paran, I., Suh, M.C., Lee, S.B., Kim, Y.-K., Shin, Y., Noh, S.-J., Park, J., Seo, Y.S., Kwon, S.-Y., Kim, H.A., Park, J.M., Kim, H.-J., Choi, S.-B., Bosland, P.W., Reeves, G., Jo, S.-H., Lee, B.-W., Cho, H.-T., Choi, H.-S., Lee, M.-S., Yu, Y., Choi, Y.D., Park, B.-S., van Deynze, A., Ashrafi, H., Hill, T., Kim, W.T., Pai, H.-S., Ahn, H.K., Yeam, I., Giovannoni, J.J., Rose, J.K.C., Sørensen, I., Lee, S.-J., Kim, R.W., Choi, I.-Y., Choi, B.-S., Lim, J.-S., Lee, Y.-H. and Choi, D. 2014. Genome sequence of the hot pepper provides insights into the evolution of pungency in
Capsicum species.
Nat. Genet. 46:270-278.
Kou, Y., Qiu, J. and Tao, Z. 2019. Every coin has two sides: reactive oxygen species during Rice-
Magnaporthe oryzae interaction.
Int. J. Mol. Sci. 20:1191.
Lambeth, J.D. 2004. NOX enzymes and the biology of reactive oxygen.
Nat. Rev. Immunol. 4:181-189.
Lara-Ortíz, T., Riveros-Rosas, H. and Aguirre, J. 2003. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in
Aspergillus nidulans
.
Mol. Microbiol. 50:1241-1255.
Lee, N.-H., Fu, T., Shin, J.-H., Song, Y.-W., Jang, D.-C. and Kim, K.S. 2021. The small GTPase CsRAC1 is important for fungal development and pepper anthracnose in
Colletotrichum scovillei
.
Plant Pathol. J. 37:607-618.
Liao, C.-Y., Chen, M.-Y., Chen, Y.-K., Kuo, K.-C., Chung, K.-R. and Lee, M.-H. 2012. Formation of highly branched hyphae by
Colletotrichum acutatum within the fruit cuticles of
Capsicum spp.
Plant Pathol. 61:262-270.
Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method.
Methods 25:402-408.
Oo, M.M. and Oh, S.-K. 2016. Chilli anthracnose (
Colletotrichum spp.) disease and its management approach.
Korean J. Agric. Sci. 43:153-162.
Pariona, N., Mtz-Enriquez, A.I., Sánchez-Rangel, D., Carrión, G., Paraguay-Delgado, F. and Rosas-Saito, G. 2019. Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens.
RSC Adv. 9:18835-18843.
Park, S.-Y., Choi, J., Lim, S.-E., Lee, G.-W., Park, J., Kim, Y., Kong, S., Kim, S.R., Rho, H.-S., Jeon, J., Chi, M.-H., Kim, S., Khang, C.H., Kang, S. and Lee, Y.-H. 2013. Global expression profiling of transcription factor genes provides new insights into pathogenicity and stress responses in the rice blast fungus.
PLoS Pathog. 9:e1003350.
Rada, B. and Leto, T.L. 2008. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases.
Contrib. Microbiol. 15:164-187.
Rastogi, R., Geng, X., Li, F. and Ding, Y. 2017. NOX activation by subunit interaction and underlying mechanisms in disease.
Front. Cell. Neurosci. 10:301.
Ryder, L.S., Dagdas, Y.F., Mentlak, T.A., Kershaw, M.J., Thornton, C.R., Schuster, M., Chen, J., Wang, Z. and Talbot, N.J. 2013. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus.
Proc. Natl. Acad. Sci. U. S. A. 110:3179-3184.
Sahoo, B.M., Banik, B.K., Borah, P. and Jain, A. 2022. Reactive oxygen species (ROS): key components in cancer therapies.
Anticancer Agents Med. Chem. 22:215-222.
Saxena, A., Raghuwanshi, R., Gupta, V.K. and Singh, H.B. 2016. Chilli anthracnose: the epidemiology and management.
Front. Microbiol. 7:1527.
Schroeckh, V., Scherlach, K., Nützmann, H.-W., Shelest, E., Schmidt-Heck, W., Schuemann, J., Martin, K., Hertweck, C. and Brakhage, A.A. 2009. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in
Aspergillus nidulans
.
Proc. Natl. Acad. Sci. U. S. A. 106:14558-14563.
Scott, B. 2015. Conservation of fungal and animal nicotinamide adenine dinucleotide phosphate oxidase complexes.
Mol. Microbiol. 95:910-913.
Segmüller, N., Kokkelink, L., Giesbert, S., Odinius, D., van Kan, J. and Tudzynski, P. 2008. NADPH oxidases are involved in differentiation and pathogenicity in
Botrytis cinerea
.
Mol. Plant-Microbe Interact. 21:808-819.
Shin, J.-H., Fu, T. and Kim, K.S. 2021. Pex7 selectively imports PTS2 target proteins to peroxisomes and is required for anthracnose disease development in
Colletotrichum scovillei
.
Fungal Genet. Biol. 157:103636.
Shin, J.-H., Han, J.-H., Park, H.-H., Fu, T. and Kim, K.S. 2019. Optimization of polyethylene glycol-mediated transformation of the pepper anthracnose pathogen
Colletotrichum scovillei to develop an applied genomics approach.
Plant Pathol. J. 35:575-584.
Shin, J.-H., Kim, H.-Y., Fu, T., Lee, K.-H. and Kim, K.S. 2022. CsPOM1, a DYRK family kinase, plays diverse roles in fungal development, virulence, and stress tolerance in the anthracnose pathogen
Colletotrichum scovillei
.
Front. Cell. Infect. Microbiol. 12:861915.
Siegmund, U., Marschall, R. and Tudzynski, P. 2015. BcNoxD, a putative ER protein, is a new component of the NADPH oxidase complex in
Botrytis cinerea
.
Mol. Microbiol. 95:988-1005.
Srinivasan, M., Vijayalakshmi Kothandaraman, S., Vaikuntavasan, P. and Rethinasamy, V. 2014. Development of conventional and real-time PCR protocols for specific and sensitive detection of
Colletotrichum capsici in chilli (
Capsicum annuum L.).
Phytoparasitica 42:437-444.
Sumimoto, H. 2008. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species.
FEBS J. 275:3249-3277.
Takemoto, D., Tanaka, A. and Scott, B. 2007. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation.
Fungal Genet. Biol. 44:1065-1076.
Torres, M.A. and Dangl, J.L. 2005. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development.
Curr. Opin. Plant. Biol. 8:397-403.
Wang, P., Li, B., Pan, Y.-T., Zhang, Y.-Z., Li, D.-W. and Huang, L. 2020. Calcineurin-responsive transcription factor CgCrzA is required for cell wall integrity and infection-related morphogenesis in
Colletotrichum gloeosporioides
.
Plant Pathol. J. 36:385-397.
Wharton, P.S. and Schilder, A.C. 2008. Novel infection strategies of
Colletotrichum acutatum on ripe blueberry fruit.
Plant Pathol. 57:122-134.
Yang, S.L. and Chung, K.-R. 2012. The NADPH oxidase-mediated production of hydrogen peroxide (H
2O
2) and resistance to oxidative stress in the necrotrophic pathogen
Alternaria alternata of citrus.
Mol. Plant Pathol. 13:900-914.
Yu, J.-H., Hamari, Z., Han, K.-H., Seo, J.-A., Reyes-Domínguez, Y. and Scazzocchio, C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi.
Fungal Genet. Biol. 41:973-981.
Zhao, Y.-L., Zhou, T.-T. and Guo, H.-S. 2016. Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca
2+ signaling is required for plant infection by
Verticillium dahliae
.
PLoS Pathog. 12:e1005793.
Zhu, X., Sayari, M., Islam, M.R. and Daayf, F. 2021. NOXA is important for
Verticillium dahliae’s penetration ability and virulence.
J. Fungi 7:814.