Bao, Y. and Howell, S.H. 2017. The unfolded protein response supports plant development and defense as well as responses to abiotic stress.
Front. Plant Sci 8:344.
Bolger, A.M., Lohse, M. and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data.
Bioinformatics 30:2114-2120.
Carter, T.E., Nelson, R.L., Sneller, C.H. and Cui, Z. 2004. Genetic diversity in soybean. In:
Soybeans: improvement, production, and uses, 3rd ed. eds. by R.M. Shibles, J.E. Harper, R.F. Wilson and R.C. Shoemaker, pp. 303-416. American Society of Agronomy, Madison, WI, USA.
Chakraborty, R., Macoy, D.M., Lee, S.Y., Kim, W.-Y. and Kim, M.G. 2017. Tunicamycin-induced endoplasmic reticulum stress suppresses plant immunity.
Appl. Biol. Chem 60:623-630.
Chisholm, S.T., Coaker, G., Day, B. and Staskawicz, B.J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response.
Cell 124:803-814.
Cooper, B., Campbell, K.B., McMahon, M.B. and Luster, D.G. 2013. Disruption of
Rpp1-mediated soybean rust immunity by virus-induced gene silencing.
Plant Signal. Behav 8:e27543.
Cregeen, S., Radisek, S., Mandelc, S., Turk, B., Stajner, N., Jakse, J. and Javornik, B. 2015. Different gene expressions of resistant and susceptible Hop cultivars in response to infection with a highly aggressive strain of
Verticillium albo-atrum
.
Plant Mol. Biol. Rep 33:689-704.
Dangl, J.L. and Jones, J.D.G. 2001. Plant pathogens and integrated defence responses to infection.
Nature 411:826-833.
Delgado-Cerrone, L., Alvarez, A., Mena, E., Ponce de León, I. and Montesano, M. 2018. Genome-wide analysis of the soybean CRK-family and transcriptional regulation by biotic stress signals triggering plant immunity.
PLoS ONE 13:e0207438.
Delplace, F., Huard-Chauveau, C., Berthom, R. and Roby, D. 2022. Network organization of the plant immune system: from pathogen perception to robust defense induction.
Plant J 109:447-470.
Dodds, P.N. and Rathjen, J.P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions.
Nat. Rev. Genet 11:539-548.
Ercolani, G.L., Hagedorn, D.J., Kelman, A. and Rand, R.E. 1974. Epiphytic survival of
Pseudomonas syringae on hairy vetch in relation to epidemiology of bacterial brown spot of bean in Wisconsin. Phytopathology. 64:pp. 1330-1339.
Faske, T., Kirkpatrick, T., Zhou, J. and Tzanetakis, I. 2014. Soybean diseases. Arkansas soybean production handbook - MP197. pp. 1-18. The Soybean Commodity Committee of the Cooperative Extension Service, University of Arkansas, Fayetteville, AR, USA.
Feil, H., Feil, W.S., Chain, P., Larimer, F., DiBartolo, G., Copeland, A., Lykidis, A., Trong, S., Nolan, M., Goltsman, E., Thiel, J., Malfatti, S., Loper, J.E., Lapidus, A., Detter, J.C., Land, M., Richardson, P.M., Kyrpides, N.C., Ivanova, N. and Lindow, S.E. 2005. Comparison of the complete genome sequences of
Pseudomonas syringae pv.
syringae B728a and pv.
tomato DC3000.
Proc. Natl. Acad. Sci. U. S. A 102:11064-11069.
Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens.
Annu. Rev. Phytopathol 43:205-227.
Gnanamanickam, S.S. and Ward, E.W.B. 1982. Characterization of
Pseudomonas syringae strains causing disease symptoms on soybean.
Can. J. Plant Pathol 4:233-236.
Gyetvai, G., Sønderkær, M., Göbel, U., Basekow, R., Ballvora, A., Imhoff, M., Kersten, B., Nielsen, K.L. and Gebhardt, C. 2012. The transcriptome of compatible and incompatible interactions of potato (
Solanum tuberosum) with
Phytophthora infestans revealed by DeepSAGE analysis.
PLoS ONE 7:e31526.
Hartman, G.L., Rupe, J.C., Sikora, E.J., Domier, L.L., Davis, J.A. and Steffey, K.L. 2015. Compendium of soybean diseases and pests. 5th ed. American Phytopathological Society, St. Paul, MN, USA. pp. 201.
Helm, M., Qi, M., Sarkar, S., Yu, H., Whitham, S.A. and Innes, R.W. 2019. Engineering a decoy substrate in soybean to enable recognition of the soybean mosaic virus NIa protease.
Mol. Plant-Microbe Interact 32:760-769.
Hirano, S.S., Baker, L.S. and Upper, C.D. 1996. Raindrop momentum triggers growth of leaf-associated populations of
Pseudomonas syringae on field-grown snap bean plants.
Appl. Environ. Microbiol 62:2560-2566.
Hirano, S.S., Clayton, M.K. and Upper, C.D. 1994. Estimation of and temporal changes in means and variances of populations of
Pseudomonas syringae on snap bean leaflets.
Phytopathology 84:934-940.
Hirano, S.S. and Upper, C.D. 1990. Population biology and epidemiology of
Pseudomonas syringae
.
Annu. Rev. Phytopathol 28:155-177.
Hirano, S.S. and Upper, C.D. 2000. Bacteria in the leaf ecosystem with emphasis on
Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte.
Microbiol. Mol. Biol. Rev 64:624-653.
Huang, H., Ullah, F., Zhou, D.-X., Yi, M. and Zhao, Y. 2019. Mechanisms of ROS regulation of plant development and stress responses.
Front. Plant Sci 10:800.
Jagodzik, P., Tajdel-Zielinska, M., Ciesla, A., Marczak, M. and Ludwikow, A. 2018. Mitogen-activated protein kinase cascades in plant hormone signaling.
Front. Plant Sci 9:1387.
Jones, J.D.G. and Dangl, J.L. 2006. The plant immune system.
Nature 444:323-329.
Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T. and Yamanishi, Y. 2007. KEGG for linking genomes to life and the environment.
Nucleic Acids Res 36:D480-D484.
Kanehisa, M., Sato, Y. and Kawashima, M. 2022. KEGG mapping tools for uncovering hidden features in biological data.
Protein Sci 31:47-53.
Kennelly, M.M., Cazorla, F.M., de Vicente, A., Ramos, C. and Sundin, G.W. 2007.
Pseudomonas syringae diseases of fruit trees: progress toward understanding and control.
Plant Dis 91:4-17.
Kim, M.-J., Kim, J.K., Kim, H.J., Pak, J.H., Lee, J.-H., Kim, D.-H., Choi, H.K., Jung, H.W., Lee, J.-D., Chung, Y.-S. and Ha, S.-H. 2012. Genetic modification of the soybean to enhance the β-carotene content through seed-specific expression.
PLoS One 7:e48287.
Kim, Y.-J., Lee, K.-W., Cho, S.-K., Oh, Y.-J., Shin, S.-O., Paik, C.-H., Kim, K.-H., Kim, T.-S. and Kim, K.-J. 2011. Selection and quality evaluation of sprout soybean [Glycine max (L.) Merrill] variety for environment-friendly cultivation in southern paddy field. Korean J. Org. Agric 19:357-372 (in Korean).
Lee, C., Choi, M.-S., Kim, H.-T., Yun, H.-T., Lee, B., Chung, Y.-S., Kim, R.W. and Choi, H.-K. 2015. Soybean [
Glycine max (L.) Merrill]: importance as a crop and pedigree reconstruction of Korean varieties.
Plant Breed. Biotechnol 3:179-196.
Lee, J., Teitzel, G.M., Munkvold, K., del Pozo, O., Martin, G.B., Michelmore, R.W. and Greenberg, J.T. 2012. Type III secretion and effectors shape the survival and growth pattern of
Pseudomonas syringae on leaf surfaces.
Plant Physiol 158:1803-1818.
Li, M.-W., Wang, Z., Jiang, B., Kaga, A., Wong, F.-L., Zhang, G., Han, T., Chung, G., Nguyen, H. and Lam, H.-M. 2020. Impacts of genomic research on soybean improvement in East Asia.
Theor. Appl. Genet 133:1655-1678.
Lindemann, J., Arny, D.C. and Upper, C.D. 1984. Use of an apparent infection threshold population of
Pseudomonas syringae to predict incidence and severity of brown spot of bean.
Phytopathology 74:1334-1339.
Liu, H.-J., Tang, Z.-X., Han, X.-M., Yang, Z.-L., Zhang, F.-M., Yang, H.-L., Liu, Y.-J. and Zeng, Q.-Y. 2015a. Divergence in enzymatic activities in the soybean GST supergene family provides new insight into the evolutionary dynamics of whole-genome duplicates.
Mol. Biol. Evol 32:2844-2859.
Liu, J.-Z., Graham, M.A., Pedley, K.F. and Whitham, S.A. 2015b. Gaining insight into soybean defense responses using functional genomics approaches.
Brief. Funct. Genomics 14:283-290.
Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G.-A., Zhang, H., Liu, Z., Shi, M., Huang, X., Li, Y., Zhang, M., Wang, Z., Zhu, B., Han, B., Liang, C. and Tian, Z. 2020. Pan-genome of wild and cultivated soybeans.
Cell 182:162-176.e13.
Loper, J.E. and Lindow, S.E. 1987. Lack of evidence for the in situ fluorescent pigment production by
Pseudomonas syringae pv.
syringae on bean leaf surfaces.
Phytopathology 77:1449-1454.
Martin, J.A. and Wang, Z. 2011. Next-generation transcriptome assembly.
Nat. Rev. Genet 12:671-682.
Meng, H., Sun, M., Jiang, Z., Liu, Y., Sun, Y., Liu, D., Jiang, C., Ren, M., Yuan, G., Yu, W., Feng, Q., Yang, A., Cheng, L. and Wang, Y. 2021. Comparative transcriptome analysis reveals resistant and susceptible genes in tobacco cultivars in response to infection by
Phytophthora nicotianae
.
Sci Rep 11:809.
Meng, X. and Zhang, S. 2013. MAPK cascades in plant disease resistance signaling.
Annu. Rev. Phytopathol 51:245-266.
Mi, H., Muruganujan, A., Huang, X., Ebert, D., Mills, C., Guo, X. and Thomas, P.D. 2019. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0).
Nat. Protoc 14:703-721.
Moreno, A.A., Mukhtar, M.S., Blanco, F., Boatwright, J.L., Moreno, I., Jordan, M.R., Chen, Y., Brandizzi, F., Dong, X., Orellana, A., Pajerowska-Mukhtar, K.M. and Polymenis, M. 2012. IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses.
PLoS ONE 7:e31944.
Park, C.-J. and Park, J.M. 2019. Endoplasmic reticulum plays a critical role in integrating signals generated by both biotic and abiotic stress in plants.
Front. Plant Sci 10:399.
Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.-C., Mendell, J.T. and Salzberg, S.L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads.
Nat. Biotechnol 33:290-295.
Pottinger, S.E., Bak, A., Margets, A., Helm, M., Tang, L., Casteel, C. and Innes, R.W. 2020. Optimizing the PBS1 decoy system to confer resistance to Potyvirus infection in
Arabidopsis and soybean.
Mol. Plant Microbe-Interact 33:932-944.
Ruberti, C., Kim, S.-J., Stefano, G. and Brandizzi, F. 2015. Unfolded protein response in plants: one master, many questions.
Curr. Opin. Plant Biol 27:59-66.
Russell, A.R., Ashfield, T. and Innes, R.W. 2015.
Pseudomonas syringae Effector AvrPphB suppresses AvrB-induced activation of RPM1 but not AvrRpm1-induced activation.
Mol. Plant Microbe-Interact 28:727-735.
Saijo, Y., Tintor, N., Lu, X., Rauf, P., Pajerowska-Mukhtar, K., Häweker, H., Dong, X., Robatzek, S. and Schulze-Lefert, P. 2009. Receptor quality control in the endoplasmic reticulum for plant innate immunity.
EMBO J 28:3439-3449.
Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N. and Nelson, A. 2019. The global burden of pathogens and pests on major food crops.
Nat. Ecol. Evol 3:430-439.
Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., Xu, D., Hellsten, U., May, G.D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M.K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.-C., Shinozaki, K., Nguyen, H.T., Wing, R.A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R.C. and Jackson, S.A. 2010. Genome sequence of the palaeopolyploid soybean.
Nature 463:178-183.
Sonah, H., Zhang, X., Deshmukh, R.K., Borhan, M.H., Fernando, W.G.D. and Bélanger, R.R. 2016. Comparative transcriptomic analysis of virulence factors in
Leptosphaeria maculans during compatible and incompatible interactions with canola.
Front. Plant Sci 7:1784.
Soybean Breeding Team, Upland Crop Div., Crop Experiment and Experiment Station 1994. A new high seed-protein, small grain and high-yielding soybean variety “Kwangankong. Korean J. Breed. Sci 16:462.
Thomas, P.D., Kejariwal, A., Campbell, M.J., Mi, H., Diemer, K., Guo, N., Ladunga, I., Ulitsky-Lazareva, B., Muruganujan, A., Rabkin, S., Vandergriff, J.A. and Doremieux, O. 2003. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification.
Nucleic Acids Res 31:334-341.
Trapnell, C., Pachter, L. and Salzberg, S.L. 2009. TopHat: discovering splice junctions with RNA-Seq.
Bioinformatics 25:1105-1111.
van Esse, H.P., Fradin, E.F., de Groot, P.J., de Wit, P.J.G.M. and Thomma, B.P.H.J. 2009. Tomato transcriptional responses to a foliar and a vascular fungal pathogen are distinct.
Mol. Plant Microbe-Interact 22:245-258.
Vinatzer, B.A., Teitzel, G.M., Lee, M.-W., Jelenska, J., Hotton, S., Fairfax, K., Jenrette, J. and Greenberg, J.T. 2006. The type III effector repertoire of
Pseudomonas syringae pv.
syringae B728a and its role in survival and disease on host and non-host plants.
Mol. Microbiol 62:26-44.
Wang, X., Liu, W., Chen, X., Tang, C., Dong, Y., Ma, J., Huang, X., Wei, G., Han, Q., Huang, L. and Kang, Z. 2010. Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction.
BMC Plant Biol 10:9.
Wang, Z. and Tian, Z. 2015. Genomics progress will facilitate molecular breeding in soybean.
Sci. China Life Sci 58:813-815.
Wei, Y., Balaceanu, A., Rufian, J.S., Segonzac, C., Zhao, A., Morcillo, R.J.L. and Macho, A.P. 2020. An immune receptor complex evolved in soybean to perceive a polymorphic bacterial flagellin.
Nat. Commun 11:3763.
Xu, Z., Song, N., Ma, L. and Wu, J. 2019. IRE1-bZIP60 pathway is required for
Nicotiana attenuata resistance to fungal pathogen
Alternaria alternata
.
Front. Plant Sci 10:263.
Yeom, W.W., Kim, H.J., Lee, K.-R., Cho, H.S., Kim, J.-Y., Jung, H.W., Oh, S.-W., Jun, S.E., Kim, H.U. and Chung, Y.-S. 2020. Increased production of α-Linolenic acid in soybean seeds by overexpression of Lesquerella
FAD3-1
.
Front. Plant Sci 10:1812.
Yuan, Y., Yang, Y., Yin, J., Shen, Y., Li, B., Wang, L. and Zhi, H. 2020. Transcriptome-based discovery of genes and networks related to
R
SC3Q
-mediated resistance to
Soybean mosaic virus in soybean.
Crop Pasture Sci 71:987.