Adam, M., Heuer, H. and Hallmann, J. 2014. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.
PLoS ONE. 9:e90402.
Aguilar, M.I., Guirado, M.L., Melero-Vara, J.M. and Gómez, J. 2010. Efficacy of composting infected plant residues in reducing the viability of Pepper mild mottle virus, Melon necrotic spot virus and its vector, the soil-borne fungus
Olpidium bornovanus
.
Crop. Prot. 29:342-348.
Ait Barka, E., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Meier-Kolthoff, J.P., Klenk, H.-P., Clément, C., Ouhdouch, Y. and Van Wezel, G.P. 2016. Taxonomy, physiology, and natural products of Actinobacteria.
Microbiol. Mol. Biol. Rev. 80:1-43.
Angel, L.P.L., Yusof, M.T., Ismail, I.S., Ping, B.T.Y., Azni, I.N.A.M., Kamarudin, N.H. and Sundram, S. 2016. An
in vitro study of the antifungal activity of
Trichoderma virens 7b and a profile of its non-polar antifungal components released against
Ganoderma boninense
.
J. Microbiol. 54:732-744.
Barbieri, E., Gioacchini, A.M., Zambonelli, A., Bertini, L. and Stocchi, V. 2005. Determination of microbial volatile organic compounds from
Staphylococcus pasteuri against
Tuber borchii using solid-phase microextraction and gas chromatography/ion trap mass spectrometry.
Rapid Commun. Mass Spectrom. 19:3411-3415.
Beneduzi, A., Ambrosini, A. and Passaglia, L.M.P. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents.
Genet. Mol. Biol. 35(4 Suppl):1044-1051.
Brader, G., Compant, S., Mitter, B., Trognitz, F. and Sessitsch, A. 2014. Metabolic potential of endophytic bacteria.
Current Opin. Biotechnol. 27:30-37.
Brakhage, A.A. and Schroeckh, V. 2011. Fungal secondary metabolites: strategies to activate silent gene clusters.
Fungal Genet. Biol. 48:15-22.
Bruce, A., Stewart, D., Verrall, S. and Wheatley, R.E. 2003. Effect of volatiles from bacteria and yeast on the growth and pigmentation of sapstain fungi.
Int. Biodeterior. Biodegrad. 51:101-108.
Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C. and Mahillon, J. 2019. Overview of the antimicrobial compounds produced by members of the
Bacillus subtilis group.
Front. Microbiol. 10:302.
Chen, J.-H., Xiang, W., Cao, K.-X., Lu, X., Yao, S.-C., Hung, D., Huang, R.-S. and Li, L.-B. 2020. Characterization of volatile organic compounds emitted from endophytic
Burkholderia cenocepacia ETR-B22 by SPME-GC-MS and their inhibitory activity against various plant fungal pathogens.
Molecules. 25:3765.
Choi, G.-S., Choi, S.-K., Cho, I.-S. and Kwon, S.-J. 2014 Resistance screening to pepper mild mottle virus pathotypes in paprika cultivars.
Res. Plant Dis. 20:299-302. (in Korean).
Choudhary, D.K. and Johri, B.N. 2009. Interactions of
Bacillus spp. and plants: with special reference to induced systemic resistance (ISR).
Microbiol. Res. 164:493-513.
Chung, B.N., Kwon, S.J., Choi, G.S., Yoon, J.Y. and Cho, I.S. 2020. Inhibitory effect of cheese whey on cucumber mosaic virus and pepper mottle virus in
Capsicum annuum
.
Res. Plant Dis. 26:103-108.
Ding, Y., Sun, T., Ao, K., Peng, Y., Zhang, Y., Li, X. and Zhang, Y. 2018. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity.
Cell. 173:1454-1467.
Egamberdieva, D., Hashem, A. and Abd-Allah, E.F. 2014. Biological control of fungal disease by rhizobacteria under saline soil conditions. In:
Emerging technologies and management of crop stress tolerance, Vol. 2. A sustainable approach, eds. by P. Ahmad and S. Rasool, pp. 161-172. Academic Press, San Diego, CA, USA.
Elsharkawy, M.M., Al-Askar, A.A., Abdelkhalek, A., Behiry, S.I., Kamran, M. and Ali, M. 2022. Suppression of pepper mild mottle virus (PMMoV) by modified whey proteins.
Life. 12:1165.
Ferraro, G.B., Suffredini, E., Mancini, P., Veneri, C., Iaconelli, M., Bonadonna, L., Montagna, M.T., De Giglio, O. and La Rosa, G. 2021. Pepper mild mottle virus as indicator for pollution: assessment of prevalence and concentration in different water environments in Italy.
Food Environ. Virol. 13:117-125.
Fu, Z.Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S.H., Tada, Y., Zheng, N. and Dong, X. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants.
Nature. 486:228-232.
Gao, H., Li, P., Xu, X., Zeng, Q. and Guan, W. 2018. Research on volatile organic compounds from
Bacillus subtilis CF-3: biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation.
Front. Microbiol. 9:456.
Garbeva, P. and Weisskopf, L. 2020. Airborne medicine: bacterial volatiles and their influence on plant health.
New Phytol. 226:32-43.
Groenhagen, U., Baumgartner, R., Bailly, A., Gardiner, A., Eberl, L., Schulz, S. and Weisskopf, L. 2013. Production of bioactive volatiles by different
Burkholderia ambifaria strains.
J. Chem. Ecol. 39:892-906.
Hung, R., Lee, S. and Bennett, J.W. 2013.
Arabidopsis thaliana as a model system for testing the effect of
Trichoderma volatile organic compounds.
Fungal Ecol. 6:19-26.
Intana, W., Kheawleng, S. and Sunpapao, A. 2021.
Trichoderma asperellum T76-14 released volatile organic compounds against postharvest fruit rot in muskmelons (
Cucumis melo) caused by
Fusarium incarnatum
.
J. Fungi. 7:46.
Jarret, R.L., Gillaspie, A.G., Barkely, N.A. and Pinnow, D.L. 2008. The occurrence and control of pepper mild mottle virus (PMMoV) in the USDA/ARS Capsicum germplasm collection. Seed Technol. 30:26-36.
Kai, M., Haustein, M., Molina, F., Petri, A., Scholz, B. and Piechulla, B. 2009. Bacterial volatiles and their action potential.
Appl. Microbiol. Biotechnol. 81:1001-1012.
Kanchiswamy, C.N., Malnoy, M. and Maffei, M.E. 2015. Chemical diversity of microbial volatiles and their potential for plant growth and productivity.
Front. Plant Sci. 6:151.
Kang, S.M., Radhakrishnan, R., Lee, K.-E., You, Y.-H., Ko, J.-H., Kim, J.-H. and Lee, I.-J. 2015. Mechanism of plant growth promotion elicited by
Bacillus sp. LKE15 in oriental melon.
Acta Agric. Scand. Sect. B Soil Plant Sci. 65:637-647.
Kim, J.-S., Lee, S.-H., Choi, H.-S., Kim, M.-K., Kwak, H.-R., Kim, J.-S., Nam, M., Cho, J.-D., Cho, I.-S. and Choi, G.-S. 2012. 2007-2011 Characteristics of plant virus infections on crop samples submitted from agricultural places.
Res. Plant Dis. 18:277-289.
Kim, N.-G., Seo, E.-Y., Han, S.-H., Gong, J.-S., Park, C.-N., Park, H.-S., Domier, L.L., Hammond, J. and Lim, H.-S. 2017.
Pseudomonas oleovorans strain KBPF-004 culture supernatants reduced seed transmission of cucumber green mottle mosaic virus and pepper mild mottle virus, and remodeled aggregation of 126 kDa and subcellular localization of movement protein of pepper mild mottle virus.
Plant Pathol. J. 33:393-401.
Köhl, J., Kolnaar, R. and Ravensberg, W.J. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy.
Front. Plant Sci. 10:845.
Kong, H.G., Shin, T.S., Kim, T.H. and Ryu, C.-M. 2018. Stereoisomers of the bacterial volatile compound 2,3-butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field.
Front. Plant Sci. 9:90.
Lee, Y.Y., Lee, Y., Kim, Y.S., Kim, H.S. and Jeon, Y. 2020 Control of red pepper anthracnose using
Bacillus subtilis YGB36, a plant growth promoting rhizobacterium.
Res. Plant Dis. 26:8-18. (in Korean).
Liu, P., Cheng, Y., Yang, M., Liu, Y., Chen, K., Long, C.-A. and Deng, X. 2014. Mechanisms of action for 2-phenylethanol isolated from
Kloeckera apiculata in control of
Penicillium molds of citrus fruits.
BMC Microbiol. 14:242.
Liu, W., Mu, W., Zhu, B. and Liu, F. 2008. Antifungal activities and components of VOCs produced by
Bacillus subtilis G8.
Curr. Res. Bacteriol. 1:28-34.
Meziane, H., Van der Sluis, I., Van Loon, L.C., Höfte, M. and Bakker, P.A.H.M. 2005. Determinants of
Pseudomonas putida WCS358 involved in inducing systemic resistance in plants.
Mol. Plant Pathol. 6:177-185.
Naamala, J. and Smith, D.L. 2021. Microbial derived compounds, a step toward enhancing microbial inoculants technology for sustainable agriculture.
Front. Microbiol. 12:634807.
Petrov, N. 2014. Effect of pepper mild mottle virus infection on pepper and tomato plants. Sci. Technol. 4:61-64.
Piechulla, B., Lemfack, M.C. and Kai, M. 2017. Effects of discrete bioactive microbial volatiles on plants and fungi.
Plant Cell Environ. 40:2042-2067.
Pieterse, C.M.J., Van der Does, D., Zamioudis, C., Leon-Reyes, A. and Van Wees, S.C.M. 2011. Hormonal modulation of plant immunity.
Annu. Rev. Cell Dev. Biol. 28:489-521.
Raaijmakers, J.M. and Mazzola, M. 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria.
Annu. Rev. Phytopathol. 50:403-424.
Radhakrishnan, R., Kang, S.-M., Baek, I.-Y. and Lee, I.-J. 2014. Characterization of plant growth-promoting traits of
Penicillium species against the effects of high soil salinity and root disease.
J. Plant Interact. 9:754-762.
Radhakrishnan, R., Shim, K.-B., Lee, B.-W., Hwang, C.-D., Pae, S.-B., Park, C.-H., Kim, S.-U., Lee, C.-K. and Baek, I.-Y. 2013. IAA-producing
Penicillium sp. NICS01 triggers plant growth and suppresses
Fusarium sp.-induced oxidative stress in sesame (
Sesamum indicum L.).
J. Microbiol. Biotechnol. 23:856-863.
Rialch, N., Sharma, V., Sharma, A. and Sharma, P.N. 2015. Characterization and complete nucleotide sequencing of pepper mild mottle virus infecting bell pepper in India.
Phytoparasitica. 43:327-337.
Roberts, P.D. and Adkins, S. 2001. Pepper mild mottle virus. Publication No. HS-808. University of Florida, IFAS Extension, Gainesville, FL, USA. 2.
Ruangwong, O.-U., Pornsuriya, C., Pitija, K. and Sunpapao, A. 2021. Biocontrol mechanisms of
Trichoderma koningiopsis PSU3-2 against postharvest anthracnose of chili pepper.
J. Fungi. 7:276.
Schreiter, S., Ding, G.-C., Heuer, H., Neumann, G., Sandmann, M., Grosch, R., Kropf, S. and Smalla, K. 2014. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce.
Front. Microbiol. 5:144.
Searchinger, T., Waite, R., Hanson, C., Ranganathan, J., Dumas, P. and Matthews, E. 2019. Creating a sustainable food future: a menu of solutions to feed nearly 10 billion people by 2050. World Resources Institute, Washington, DC, USA. 556.
Sharifi, R. and Ryu, C.-M. 2016. Are bacterial volatile compounds poisonous odors to a fungal pathogen
Botrytis cinerea, alarm signals to
Arabidopsis seedlings for eliciting induced resistance, or both?
Front. Microbiol. 7:196.
Song, G.C. and Ryu, C.-M. 2013. Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions.
Int. J. Mol. Sci. 14:9803-9819.
Sponsler, D.B., Grozinger, C.M., Hitaj, C., Rundlöf, M., Botías, C., Code, A., Lonsdorf, E.V., Melathopoulos, A.P., Smith, D.J., Suryanarayanan, S., Thogmartin, W.E., Williams, N.M., Zhang, M. and Douglas, M.R. 2019. Pesticides and pollinators: a socioecological synthesis.
Sci. Total Environ. 662:1012-1027.
Syed-Ab-Rahman, S.F., Carvalhais, L.C., Chua, E.T., Chung, F.Y., Moyle, P.M., Eltanahy, E.G. and Schenk, P.M. 2019. Soil bacterial diffusible and volatile organic compounds inhibit
Phytophthora capsici and promote plant growth.
Sci. Total Environ. 692:267-280.
Tahir, H.A.S., Gu, Q., Wu, H., Niu, Y., Huo, R. and Gao, X. 2017.
Bacillus volatiles adversely affect the physiology and ultra-structure of
Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt.
Sci. Rep. 7:40481.
Tan, Q.-W., Fang, P.-H., Ni, J.-C., Gao, F. and Chen, Q.-J. 2017. Metabolites produced by an endophytic
Phomopsis sp. and their anti-TMV activity.
Molecules. 22:2073.
Tan, Q.-W., Gao, F.-L., Wang, F.-R. and Chen, Q.-J. 2015. Anti-TMV activity of malformin A1, a cyclic penta-peptide produced by an endophytic fungus
Aspergillus tubingensis FJBJ11.
Int. J. Mol. Sci. 16:5750-5761.
Tilocca, B., Cao, A. and Migheli, Q. 2020. Scent of a killer: microbial volatilome and its role in the biological control of plant pathogens.
Front. Microbiol. 11:41.
Tonelli, M.L., Taurian, T., Ibáñez, F., Angelini, J. and Fabra, A. 2010. Selection and in vitro characterization of biocontrol agents with potential to protect peanut plants against fungal pathogens. J. Plant Pathol. 92:73-82.
Tsuda, K. and Somssich, I.E. 2015. Transcriptional networks in plant immunity.
New Phytol. 206:932-947.
United Nations 2022 World population prospects 2022: summary of results. URL
https://www.un.org
. [11 April 2022].
Vitti, A., Pellegrini, E., Nali, C., Lovelli, S., Sofo, A., Valerio, M., Scopa, A. and Nuzzaci, M. 2016.
Trichoderma harzianum T-22 induces systemic resistance in tomato infected by cucumber mosaic virus.
Fron. Plant Sci. 7:1520.
Wei, Z., Gu, Y., Friman, V.-P., Kowalchuk, G.A., Xu, Y., Shen, Q. and Jousset, A. 2019. Initial soil microbiome composition and functioning predetermine future plant health.
Sci. Adv. 5:eaaw0759.
Wenke, K., Kopka, J., Schwachtje, J., van Dongen, J.T. and Piechulla, B. 2018. Volatiles of rhizobacteria
Serratia and
Stenotrophomonas alter growth and metabolite composition of
Arabidopsis thaliana
.
Plant Biol. 21(Suppl 1):109-119.
Wetter, C., Conti, M., Altschuh, D., Tabillion, R. and van Regenmortel, M.H.V. 1984. Pepper mild mottle virus, a tobamovirus infecting pepper cultivars in Sicily.
Phytopathology. 74:405-410.
Yoon, J.-Y., Gangireddygari, V.S.R., Cho, I.-S., Chung, B.-N., Yoon, B.-D. and Choi, S.-K. 2021. Effects of
β-glucan from
Aureobasidium pullulans on cucumber mosaic virus infection in chili pepper.
Res. Plant Dis. 27:17-23.
Zhang, Z.-Z., Li, Y.-B., Qi, L. and Wan, X.-C. 2006. Antifungal activities of major tea leaf volatile constituents toward
Colletorichum camelliae Massea.
J. Agric. Food Chem. 54:3936-3940.