Bauer, S., Mekonnen, D. W., Hartmann, M., Yildiz, I., Janowski, R., Lange, B., Geist, B., Zeier, J. and Schaffner, A. R. 2021. UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity.
Plant Cell 33:714-734.
Bernsdorff, F., Döring, A.-C., Gruner, K., Schuck, S., Bräutigam, A. and Zeier, J. 2016. Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways.
Plant Cell 28:102-129.
Cai, J., Jozwiak, A., Holoidovsky, L., Meijler, M. M., Meir, S., Rogachev, I. and Aharoni, A. 2021. Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth.
Mol. Plant 14:440-455.
Cameron, R. K., Paiva, N. L., Lamb, C. J. and Dixon, R. A. 1999. Accumulation of salicylic acid and PR-1 gene transcripts in relation to the systemic acquired resistance (SAR) response induced by
Pseudomonas syringae pv.
tomato in
Arabidopsis.
Physiol. Mol. Plant Pathol. 55:121-130.
Cecchini, N. M., Jung, H. W., Engle, N. L., Tschaplinski, T. J. and Greenberg, J. T. 2015. ALD1 regulates basal immune components and early inducible defense responses in
Arabidopsis.
Mol. Plant-Microbe Interact 28:455-466.
Chanda, B., Xia, Y., Mandal, M. K., Yu, K., Sekine, K.-T., Gao, O.-M., Selote, D., Hu, Y., Stromberg, A., Navarre, D., Kachroo, A. and Kachroo, P. 2011. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants.
Nat. Genet 43:421-427.
Chassot, C., Buchala, A., Schoonbeek, H.-J., Métraux, J.-P. and Lamotte, O. 2008. Wounding of
Arabidopsis leaves causes a powerful but transient protection against
Botrytis infection.
Plant J. 55:555-567.
Chaturvedi, R., Venables, B., Petros, R. A., Nalam, V., Li, M., Wang, X., Takemoto, L. J. and Shah, J. 2012. An abietane diterpenoid is a potent activator of systemic acquired resistance.
Plant J. 71:161-172.
Chen, T.-T., Liu, F-F., Xiao, D.-W., Jiang, X.-Y., Li, P., Chao, S.-M., Houm, B.-K. and Li, Y.-J. 2020. The
Arabidopsis UDP-glycosyltransferase 75B1, conjugates abscisic acid and affects plant response to abiotic stresses.
Plant Mol. Biol. 102:389-401.
Chen, Y.-C., Holmes, E. C., Rajniak, J., Kim, J.-G., Tang, S., Fischer, C. R., Mudgett, M. B. and Sattely, E. S. 2018. N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in
Arabidopsis.
Proc. Natl. Acad. Sci. U. S. A 115:E4920-E4929.
Dean, JV. and Delaney, S. P. 2008. Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of
Arabidopsis thaliana.
Physiol. Plant 132:417-425.
El-Shetehy, M., Wang, C., Shine, M. B., Yu, K., Kachroo, A. and Kachroo, P. 2015. Nitric oxide and reactive oxygen species are required for systemic acquired resistance in plants.
Plant Signal. Behav 10:e998544.
Fu, Z. Q. and Dong, X. 2013. Systemic acquired resistance: turning local infection into global defense.
Annu. Rev. Plant Biol. 64:839-863.
Gao, Q.-M., Yu, K., Xia, Y., Shine, M. B., Wang, C., Navarre, D., Kachroo, A. and Kachroo, P. 2014. Mono- and digalactosyldiacylglycerol lipids function nonredundantly to regulate systemic acquired resistance in plants.
Cell Rep. 9:1681-1691.
Gao, Q.-M., Zhu, S., Kachroo, P. and Kachroo, A. 2015. Signal regulators of systemic acquired resistance.
Front. Plant Sci. 6:228.
Garcion, C., Lohmann, A., Lamodière, E., Catinot, J., Buchala, A., Doermann, P. and Mćtraux, J.-P. 2008. Characterization and biological function of the
ISOCHORISMATE SYNTHASE2 gene of
Arabidopsis.
Plant Physiol. 147:1279-1287.
Hartmann, M. and Zeier, J. 2018. L-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants.
Plant J. 96:5-21.
Hartmann, M., Zeier, T., Bernsdorff, F., Reichel-Deland, V., Kim, D., Hohmann, M., Scholten, N., Schuck, S., Bräutigam, A., Hölzel, T., Ganter, C. and Zeier, J. 2018. Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity.
Cell 173:456-469.
Holmes, E. C., Chen, Y.-C., Mudgett, M. B. and Sattely, E. S. 2021.
Arabidopsis UGT76B1 glycosylates N-hydroxy-pipecolic acid and inactivates systemic acquired resistance in tomato.
Plant Cell 33:750-765.
Holmes, E. C., Chen, Y.-C., Sattely, E. S. and Mudgett, M. B. 2019. An engineered pathway for
N-hydroxy-pipecolic acid synthesis enhances systemic acquired resistance in tomato.
Sci. Signal 12:eaay3066.
Hou, B., Lim, E.-K., Higgins, G. S. and Bowles, D. J. 2004. N-glucosylation of cytokinins by glycosyltransferases of
Arabidopsis thaliana.
J. Biol. Chem 279:47822-47832.
Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y.-H., Yu, J.-Q. and Chen, Z. 2010. Functional analysis of the
Arabidopsis PAL gene family in plant growth, development, and response to environmental stress.
Plant Physiol. 153:1526-1538.
Huang, W., Wang, Y., Li, X. and Zhang, Y. 2020. Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity.
Mol. Plant 13:31-41.
Jiang, S.-C., Engle, N. L., Banday, ZZ., Cecchini, N. M., Jung, H. W., Tschaplinski, T. J. and Greenberg, J. T. 2021. ALD1 accumulation in
Arabidopsis epidermal plastids confers local and non-autonomous disease resistance.
J. Exp. Bot. 72:2710-2726.
Jin, S.-H., Ma, X.-M., Han, P., Wang, B., Sun, Y.-G., Zhang, G.-Z., Li, Y.-J. and Hou, B.-K. 2013. UGT74D1 is a novel auxin glycosyltransferase from
Arabidopsis thaliana.
PLoS ONE 8:e61705.
Jones, JDG. and Dangl, JL. 2006. The plant immune system.
Nature 444:323-329.
Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. and Greenberg, J. T. 2009. Priming in systemic plant immunity.
Science 324:89-91.
Kachroo, A., Liu, H., Yuan, X., Kurokawa, T. and Kachroo, P. 2022. Systemic acquired resistance-associated transport and metabolic regulation of salicylic acid and glycerol-3-phosphate.
Essays Biochem. 66:673-681.
Kachroo, P., Burch-Smith, T. M. and Grant, M. 2021. An emerging role for chloroplasts in disease and defense.
Annu. Rev. Phytopathol 59:423-445.
Klessig, D. F., Choi, H. W. and Dempsey, D. A. 2018. Systemic acquired resistance and salicylic acid: past, present, and future.
Mol. Plant-Microbe Interact 31:871-888.
Langlois-Meurinne, M., Gachon, C. M. M. and Saindrenan, P. 2005. Pathogen-responsive expression of glycosyltransferase genes
UGT73B3 and
UGT73B5 is necessary for resistance to
Pseudomonas syringae pv tomato in
Arabidopsis.
Plant Physiol. 139:1890-1901.
Li, D., Liu, R., Singh, D., Yuan, X., Kachroo, P. and Raina, R. 2020. JMJ14 encoded H3K4 demethylase modulates immune responses by regulating defence gene expression and pipecolic acid levels.
New Phytol. 225:2108-2121.
Lim, G.-H., Liu, H., Yu, K., Liu, R., Shine, M. B., Fernandez, J., Burch-Smith, T., Mobley, J. K., McLetchi, N., Kachroo, A. and Kachroo, P. 2020. The plant cuticle regulates apoplastic transport of salicylic acid during systemic acquired resistance.
Sci. Adv 6:eaaz0478.
Lim, G.-H., Shine, M. B., de Lorenzo, L., Yu, K., Cui, W., Navarre, D., Hunt, AG., Lee, J.-Y., Kachroo, A. and Kachroo, P. 2016. Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants.
Cell Host Microbe 19:541-549.
Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J. and Cameron, R. K. 2002. A putative lipid transfer protein involved in systemic resistance signalling in
Arabidopsis.
Nature 419:399-403.
Mandal, M. K., Chanda, B., Xia, Y., Yu, K., Sekine, K.-T., Gao, Q.-M., Selote, D., Kachroo, A. and Kachroo, P. 2011. Glycerol-3-phosphate and systemic immunity.
Plant Signal. Behav 6:1871-1874.
Mohnike, L., Rekhter, D., Huang, W., Feussner, K., Tian, H., Herrfurth, C., Zhang, Y. and Feussner, I. 2021. The glycosyltransferase UGT76B1 modulates N-hydroxy-pipecolic acid homeostasis and plant immunity.
Plant Cell 33:735-749.
Nawrath, C. and Métraux, J.-P. 1999. Salicylic acid induction-deficient mutants of
Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation.
Plant Cell 11:1393-1404.
Noutoshi, Y., Okazaki, M., Kida, T., Nishina, Y., Morishita, Y., Ogawa, T., Suzuki, H., Shibata, D., Jikumaru, Y., Hanada, A., Kamiya, Y. and Shirasu, K. 2012. Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in
Arabidopsis.
Plant Cell 24:3795-3804.
Osbourn, A. E. 1996. Preformed antimicrobial compounds and plant defense against fungal attack.
Plant Cell 8:1821-1831.
Park, S.-W., Kaimoyo, E., Kumar, D., Mosher, S. and Klessig, D. F. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance.
Science 318:113-116.
Park, S.-W., Liu, P.-P., Forouhar, F., Vlot, A. C., Tong, L., Tietjen, K. and Klessig, D. F. 2009. Use of a synthetic salicylic acid analog to investigate the roles of methyl salicylate and its esterases in plant disease resistance.
J. Biol. Chem 284:7307-7317.
Rekhter, D., Lüdke, D., Ding, Y., Feussner, K., Zienkiewicz, K., Lipka, V., Wiermer, M., Zhang, Y. and Feussner, I. 2019. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid.
Science 365:498-502.
Rivas-San Vicente, M. and Plasencia, J. 2011. Salicylic acid beyond defence: its role in plant growth and development.
J. Exp. Bot. 62:3321-3338.
Schnake, A., Hartmann, M., Schreiber, S., Malik, J., Brahmann, L., Yildiz, I., von Dahlen, J., Rose, LE., Schaffrath, U. and Zeier, J. 2020. Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants.
J. Exp. Bot. 71:6444-6459.
Shah, J., Chaturvedi, R., Chowdhury, Z., Venables, B. and Petros, R. A. 2014. Signaling by small metabolites in systemic acquired resistance.
Plant J. 79:645-658.
Shan, L. and He, P. 2018. Pipped at the post: pipecolic acid derivative identified as SAR regulator.
Cell 173:286-287.
Sharma, S., Shinde, S. and Verslues, P. E. 2013. Functional characterization of an ornithine cyclodeaminase-like protein of
Arabidopsis thaliana.
BMC Plant Biol. 13:182.
Shields, A., Shivnauth, V. and Castroverde, C. D. M. 2022. Salicylic acid and N-hydroxypipecolic acid at the fulcrum of the plant immunity-growth equilibrium.
Front. Plant Sci. 13:841688.
Shine, M. B., Gao, Q.-M., Chowda-Reddy, R. V., Singh, A. K., Kachroo, P. and Kachroo, A. 2019. Glycerol-3-phosphate mediates rhizobia-induced systemic signaling in soybean.
Nat. Commun 10:5303.
Shine, M. B., Zhang, K., Liu, H., Lim, G.-H., Xia, F., Yu, K., Hunt, A. G., Kachroo, A. and Kachroo, P. 2022. Phased small RNA-mediated systemic signaling in plants.
Sci. Adv 8:eabm8791.
Song, J. T. 2005. Biochemical characterization of an
Arabidopsis glucosyltransferase with high activity toward jasmonic acid.
J. Plant Biol. 48:422-428.
Song, J. T. 2006. Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in
Arabidopsis thaliana.
Mol. Cells 22:233-238.
Song, J. T., Lu, H., McDowell, J. M. and Greenberg, J. T. 2004. A key role for ALD1 in activation of local and systemic defenses in Arabidopsis.
Plant J. 40:200-212.
Sun, T., Busta, L., Zhang, Q., Ding, P., Jetter, R. and Zhang, Y. 2018. TGACG-BINDING FACTOR 1 (TGA 1) and TGA 4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD 1) and CALMODULIN-BINDING PROTEIN 60g (CBP 60g).
New Phytol. 217:344-354.
Sun, T., Zhang, Y., Li, Y., Zhang, Q., Ding, Y. and Zhang, Y. 2015. ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity.
Nat. Commun 6:10159.
Torrens-Spence, M. P., Bobokalonova, A., Carballo, V., Glinkerman, C. M., Pluskal, T., Shen, A. and Weng, J.-K. 2019. PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in
Arabidopsis.
Mol. Plant 12:1577-1586.
Truman, W. and Glazebrook, J. 2012. Co-expression analysis identifies putative targets for CBP60g and SARD1 regulation.
BMC Plant Biol. 12:216.
Underwood, W. 2012. The plant cell wall: a dynamic barrier against pathogen invasion.
Front. Plant Sci. 3:85.
Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H. and Ryals, J. 1994. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction.
Plant Cell 6:959-965.
Vlot, A. C., Dempsey, D. A. and Klessig, D. F. 2009. Salicylic acid, a multifaceted hormone to combat disease.
Annu. Rev. Phytopathol 47:177-206.
von Saint Paul, V., Zhang, W., Kanawati, B., Geist, B., Faus-Keßler, T., Schmitt-Kopplin, P. and Schäffner, A. R. 2011. The
Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence.
Plant Cell 23:4124-4145.
Wang, C., El-Shetehy, M., Shine, M. B., Yu, K., Navarre, D., Wendehenne, D., Kachroo, A. and Kachroo, P. 2014. Free radicals mediate systemic acquired resistance.
Cell Rep. 7:348-355.
Wang, C., Liu, R., Lim, G.-H., de Lorenzo, L., Yu, K., Zhang, K., Hunt, A. G., Kachroo, A. and Kachroo, P. 2018. Pipecolic acid confers systemic immunity by regulating free radicals.
Sci. Adv 4:eaar4509.
Wildermuth, M. C., Dewdney, J., Wu, G. and Ausubel, F. M. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence.
Nature 414:562-565.
Wu, Y., Zhang, D., Chu, J. Y., Boyle, P., Wang, Y., Brindle, I. D., De Luca, V. and Després, C. 2012. The
Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid.
Cell Rep. 1:639-647.
Xia, Y., Gao, Q.-M., Yu, K., Lapchyk, L., Navarre, D., Hildebrand, D., Kachroo, A. and Kachroo, P. 2009. An intact cuticle in distal tissues is essential for the induction of systemic acquired resistance in plants.
Cell Host Microbe 5:151-165.
Xia, Y., Yu, K., Navarre, D., Seebold, K., Kachroo, A. and Kachroo, P. 2010. The
glabra1 mutation affects cuticle formation and plant responses to microbes.
Plant Physiol. 154:833-846.
Yildiz, I., Mantz, M., Hartmann, M., Zeier, T., Kessel, J., Thurow, C., Gatz, C., Petzsch, P., Köhrer, K. and Zeier, J. 2021. The mobile SAR signal N-hydroxypipecolic acid induces NPR1-dependent transcriptional reprogramming and immune priming.
Plant Physiol. 186:1679-1705.
Yu, K., Soares, J. M., Mandal, M. K., Wang, C., Chanda, B., Gifford, A. N., Fowler, J. S., Navarre, D., Kachroo, A. and Kachroo, P. 2013. A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity.
Cell Rep. 3:1266-1278.
Zeier, J. 2013. New insights into the regulation of plant immunity by amino acid metabolic pathways.
Plant Cell Environ 36:2085-2103.
Zeier, J. 2021. Metabolic regulation of systemic acquired resistance.
Curr. Opin. Plant Biol. 62:102050.
Zhang, J. and Zhou, J.-M. 2010. Plant immunity triggered by microbial molecular signatures.
Mol. Plant 3:783-793.