Bisset, J. 1984. A revision of the genus
Trichoderma. I. Section
Longibrachiatum sect. nov.
Can. J. Bot 62:924-931.
Cardoso, R. M. and Ferreira, E. P. B. 2021. Assessment of consortia inoculation effects on the agronomical performance of the common bean.
Commun. Soil Sci. Plant Anal 52:1971-1980.
Carvalho, D. D. C., de Mello, S. C. M., Lobo, M. Júnior and Geraldine, A. M. 2011. Biocontrol of seed pathogens and growth promotion of common bean seedlings by
Trichoderma harzianum
.
Pesq. Agropec. Bras 46:822-828.
Carvalho, D. D. C., Geraldine, A. M., Lobo, M. Junior and de Mello, S. C. M. 2015. Biological control of white mold by
Trichoderma harzianum in common bean under field conditions.
Pesq. Agropec. Bras 50:1220-1224.
Castillo, F. D. H., Padilla, A.M .B., Morales, G. G., Siller, M. C., Herrera, R. R., Gonzales, C. N. A. and Reyes, F. C. 2011.
In vitro antagonist action of Trichoderma strains against Sclerotinia sclerotiorum and Sclerotium cepivorum
. Am. J. Agric. Biol. Sci 6:410-417.
Cruz-Magalhães, V., Nieto-Jacobo, M. F., van Zijll de Jong, E., Rostás, M., Padilla-Arizmendi, F., Kandula, D., Kandula, J., Hampton, J., Herrera-Estrella, A., Steyaert, J. M., Stewart, A., Loguercio, L. L. and Mendoza-Mendoza, A. 2019. The NADPH oxidases Nox1 and Nox2 differentially regulate volatile organic compounds, fungistatic activity, plant growth promotion and nutrient assimilation in
Trichoderma atroviride
.
Front. Microbiol 9:3271.
da Silva, L. R., de Mello, S. C. M., Valadares-Inglis, M. C., do Carmo Costa, M. M., Saraiva, M. A. P., Rêgo, E. C. S., Zacaroni, A. B., Muniz, P. H. P. C. and Pappas, M. C. R. 2022. Transcriptional responses and reduction in carpogenic germination of
Sclerotinia sclerotiorum exposed to volatile organic compounds of
Trichoderma azevedoi
.
Biol. Control 169:104897.
da Silva, L. R., Muniz, P. H. P. C., Peixoto, G. H. S., Luccas, B. E. G. D., da Silva, J. B. T. and de Mello, S. C. M. 2021a. Mycelial inhibition of
Sclerotinia sclerotiorum by
Trichoderma spp. volatile organic compounds in distinct stages of development.
Pak. J. Biol. Sci 24:527-536.
da Silva, L. R., Valadares-Inglis, M. C., Moraes, M. C. B., Magalhães, D. M., Sifuentes, D. N., Martins, I. and de Mello, S. C. M. 2020. Morphological and protein alterations in
Sclerotinia sclerotiorum (Lib.) de Bary after exposure to volatile organic compounds of
Trichoderma spp.
Biol. Control 147:104279.
da Silva, L. R., Valadares-Inglis, M. C., Peixoto, G. H. S., de Luccas, B. E. G., Muniz, P. H. P. C., Magalhães, D. M., Moraes, M. C. B. and Mello, S. C. M. 2021b. Volatile organic compounds emitted by
Trichoderma azevedoi promote the growth of lettuce plants and delay the symptoms of white mold.
Biol. Control 152:104447.
de Figueirêdo, G. S., Figueirêdo, L. C., Cavalcanti, F. C. N., dos Santos, A. C., da Costa, A. F. and de Oliveira, N. T. 2010. Biological and chemical control of
Sclerotinia sclerotiorum using Trichoderma spp. and
Ulocladium atrum and pathogenicity to bean plants.
Braz. Arch. Biol. Technol 53:1-9.
Dennis, C. and Webster, J. 1971. Antagonistic properties of species-groups of Trichoderma, II. Production of volatile antibiotic. Trans. Br. Mycol. Soc 57:41-48.
Elsherbiny, E. A., Amin, B. H., Aleem, B., Kingsley, K. L. and Bennett, J. W. 2020.
Trichoderma volatile organic compounds as a biofumigation tool against late blight pathogen
Phytophthora infestans in postharvest potato tubers.
J. Agric. Food Chem 68:8163-8171.
Eslahi, N., Kowsari, M., Zamani, M. R. and Motallebi, M. 2021. Correlation study between biochemical and molecular pathways of
Trichoderma harzianum recombinant strains on plant growth and health.
J. Plant Growth Regul 41:1561-1577.
Estrada-Rivera, M., Rebolledo-Prudencio, O. G., Pérez-Robles, D. A., Rocha-Medina, M. D. C., González-López, M. D. C. and Casas-Floresa, S. 2019.
Trichoderma histone deacetylase HDA-2 modulates multiple responses in
Arabidopsis
.
Plant Physiol 179:1343-1361.
Ferreira, D. F. 2011. Sisvar: a computer statistical analysis system.
Cienc. Agrotec 35:1039-1042.
Ganascini, D., Laureth, J. C. U., Mendes, I. S., Tokura, L. K., Sutil, E. L., de Villa, B., Alovisi, A. M. T., Caon, IL., Mercante, E. and Coelho, S. R. M. 2019. Analysis of the production chain of bean culture in Brazil.
J. Agric. Sci 11:256-267.
Geraldine, A. M., Lopes, F. A. C., Carvalho, D. D. C., Barbosa, E. T., Rodrigues, A. R., Brandão, R. S., Ulhoa, C. J. and Lobo, M. Junior 2013. Cell wall-degrading enzymes and parasitism of sclerotia are key factors on field biocontrol of white mold by
Trichoderma spp.
Biol. Control 67:308-316.
González-Pérez, E., Ortega-Amaro, M. A., Salazar-Badillo, F. B., Bautista, E., Douterlungne, D. and Jiménez-Bremont, J. F. 2018. The
Arabidopsis-
Trichoderma interaction reveals that the fungal growth medium is an important factor in plant growth induction.
Sci. Rep 8:16427.
Guo, Y., Ghirardo, A., Weber, B., Schnutzier, J.-P., Philip Benz, J. and Rosenkranz, M. 2019.
Trichoderma species differ in their volatile profiles and in antagonism toward ectomycorrhiza
Laccaria bicolor
.
Front. Microbiol 10:891.
Hicks, J., Yu, J. H., Keller, N. P. and Adams, T. H. 1997.
Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G-alpha protein-dependent signaling pathway.
EMBO J 16:4916-4923.
Inglis, P. W., Mello, S. C. M., Martins, I., Silva, J. B. T., Macêdo, K., Sifuentes, D. N. and Valadares-Inglis, M. C. 2020.
Trichoderma from Brazilian garlic and onion crop soils and description of two new species:
Trichoderma azevedoi and
Trichoderma peberdyi
.
PLoS ONE 15:e0228485.
Intana, W., Kheawleng, S. and Sunpapao, A. 2021.
Trichoderma asperellum T76-14 released volatile organic compounds against postharvest fruit rot in muskmelons (
Cucumis melo) caused by
Fusarium incarnatum
.
J. Fungi 7:46.
Kamaruzzaman, M., Islam, M. S., Mahmud, S., Polash, S. A., Sultana, R., Hasan, M. A., Wang, C. and Jiang, C. 2021.
In vitro and
in silico approach of fungal growth inhibition by
Trichoderma asperellum HbGT6-07 derived volatile organic compounds.
Arab. J. Chem 14:103290.
Karimi, A. K. and Altinok, H. H. 2019.
In vitro anifungal activity of Trichoderma harzianum Rifai and PGPR strains as biocontrol agents against gray mold and white mold in eggplantFresenius
. Environ. Bull 28:6166-6173.
Kubicek, C. P., Herrera-Estrella, A., Seidl-Seiboth, V., Martinez, D. A., Druzhinina, I. S., Thon, M., Zeilinger, S., Casas-Flores, S., Horwitz, B. A., Mukherjee, P. K., Mukherjee, M., Kredics, L., Alcaraz, L. D., Aerts, A., Antal, Z., Atanasova, L., Cervantes-Badillo, M. G., Challacombe, J., Chertkov, O., McCluskey, K., Coulpier, F., Deshpande, N., von Döhren, H., Ebbole, D. J., Esquivel-Naranjo, E. U., Fekete, E., Flipphi, M., Glaser, F., Gómez-Rodríguez, E. Y., Gruber, S., Han, C., Henrissat, B., Hermosa, R., Hernández-Oñate, M., Karaffa, L., Kosti, I., Le Crom, S., Lindquist, E., Lucas, S., Lübeck, M., Lübeck, P. S., Margeot, A., Metz, B., Misra, M., Nevalainen, H., Omann, M., Packer, N., Perrone, G., Uresti-Rivera, E. E., Salamov, A., Schmoll, M., Seiboth, B., Shapiro, H., Sukno, S., Tamayo-Ramos, J. A., Tisch, D., Wiest, A., Wilkinson, H. H., Zhang, M., Coutinho, P. M., Kenerley, C. M., Monte, E., Baker, S. E. and Grigoriev, I. V. 2011. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of
Trichoderma
.
Genome Biol 12:R40.
Kumar, S., Shukla, V., Dubey, M. K. and Upadhyay, R. S. 2021. Activation of defense response in common bean against stem rot disease triggered by
Trichoderma erinaceum and
Trichoderma viride
.
J. Basic Microbiol 61:910-922.
Lazazzara, V., Vicelli, B., Bueschl, C., Parich, A., Pertot, I., Schuhmacher, R. and Perazzolli, M. 2021.
Trichoderma spp. volatile organic compounds protect grapevine plants by activating defense-related processes against downy mildew.
Physiol. Plant 172:1950-1965.
Lee, S., Hung, R., Yap, M. and Bennett, J. W. 2015. Age matters: the effects of volatile organic compounds emitted by
Trichoderma atroviride on plant growth.
Arch. Microbiol 197:723-727.
Lee, S., Yap, M., Behringer, G., Hung, R. and Bennett, J. W. 2016. Volatile organic compounds emitted by
Trichoderma species mediate plant growth.
Fungal Biol. Biotechnol 3:7.
Li, N., Alfiky, A., Wang, W., Islam, M., Nourollahi, K., Liu, X. and Kang, S. 2018. Volatile compound-mediated recognition and inhibition between
Trichoderma biocontrol agents and
Fusarium oxysporum
.
Front. Microbiol 9:2614.
Mahoney, K. J., McCreary, C. M. and Gillard, C. L. 2014. Response of dry bean white mold [
Sclerotinia sclerotiorum (Lib.) de Bary, causal organism] to fungicides.
Can. J. Plant Sci 94:905-910.
Mayo-Prieto, S., Porteous-Álvarez, A. J., Mezquita-García, S., Rodríguez-González, A., Carro-Huerga, G., del Ser-Herrero, S., Gutiérrez, S. and Casquero, P. A. 2021. Influence of physicochemical characteristics of bean crop soil in
Trichoderma spp. development.
Agronomy 11:274.
Miklas, P. N., Porter, L. D., Kelly, J. D. and Myers, J. R. 2013. Characterization of white mold disease avoidance in common bean.
Eur. J. Plant Pathol 135:525-543.
Motlagh, M. R. S. and Abolghasemi, M. 2022. The effect of
Trichoderma spp. isolates on some morphological traits of canola inoculated with
Sclerotinia sclerotiorum and evaluation of their efficacy in biological control of pathogen.
J. Saudi Soc. Agric. Sci 21:217-231.
Mukherjee, P. K., Horwitz, B. A. and Kenerley, C. M. 2012. Secondary metabolism in
Trichoderma: a genomic perspective.
Microbiology 158:35-45.
Nawrocka, J., Szczech, M. and Małolepsza, U. 2018.
Trichoderma atroviride enhances phenolic synthesis and cucumber protection against
Rhizoctonia solani
.
Plant Prot. Sci 54:17-23.
Nieto-Jacobo, M. F., Steyaert, J. M., Salazar-Badillo, F. B., Vi Nguyen, D., Rostás, M., Braithwaite, M., De Souza, J. T., Jimenez-Bremont, J. F., Ohkura, M., Stewart, A. and Mendoza-Mendoza, A. 2017. Environmental growth conditions of
Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion.
Front. Plant Sci 8:102.
O’Brien, P. A. 2017. Biological control of plant diseases.
Aust. Plant Pathol 46:293-304.
Ojaghian, S., Wang, L., Xie, G.-L. and Zhang, J.-Z. 2019. Effect of volatiles produced by
Trichoderma spp. on expression of glutathione transferase genes in
Sclerotinia sclerotiorum
.
Biol. Control 136:103999.
Ordóñez-Valencia, C., Ferrera-Cerrato, R., Quintanar-Zúñiga, R. E., Flores-Ortiz, C. M., Guzmán, G. J. M., Alarcón, A., Larsen, J. and García-Barradas, O. 2015. Morphological development of sclerotia by
Sclerotinia sclerotiorum: a view from light and scanning electron microscopy.
Ann. Microbiol 65:765-770.
R Core Team 2019 R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/
. 1 February 2022.
Rajani, P., Rajasekaran, C., Vasanthakumari, M. M., Olsson, S. B., Ravikanth, G. and Shaanker, R. U. 2021. Inhibition of plant pathogenic fungi by endophytic
Trichoderma spp. through mycoparasitism and volatile organic compounds.
Microbiol. Res 242:126595.
Ruangwong, O.-U., Wonglom, P., Suwannarach, N., Kumla, J., Thaochan, N., Chomnunti, P., Pitija, K. and Sunpapao, A. 2021. Volatile organic compound from
Trichoderma asperelloides TSU1: impact on plant pathogenic fungi.
J. Fungi 7:187.
Siddiquee, S., Cheong, B. E., Taslima, K., Kausar, H. and Hasan, M. M. 2012. Separation and identification of volatile compounds from liquid cultures of
Trichoderma harzianum by GC-MS using three different capillary columns.
J. Chromatogr. Sci 50:358-367.
Smolińska, U. and Kowalska, B. 2018. Biological control of the soil-borne fungal pathogen
Sclerotinia sclerotiorum: a review.
J. Plant Pathol 100:1-12.
Spiteller, P. 2015. Chemical ecology of fungi.
Nat. Prod. Rep 32:971-993.
Srivastava, M., Kumar, V., Shahid, M., Pandey, S. and Singh, A. 2016.
Trichoderma: a potential and effective bio fungicide and alternative source against notable phytopathogens: a review.
Afr. J. Agric. Res 11:310-316.
Trail, F., Mahanti, N. and Linz, J. 1995. Molecular biology of aflatoxin biosynthesis.
Microbiology 141:755-765.
Wonglom, P., Ito, S.-I. and Sunpapao, A. 2020. Volatile organic compounds emitted from endophytic fungus
Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (
Lactuca sativa).
Fungal Ecol 43:100867.
You, J., Li, G., Li, C., Zhu, L., Yang, H., Song, R. and Gu, W. 2022. Biological control and plant growth promotion by volatile organic compounds of
Trichoderma koningiopsis T-51.
J. Fungi 8:131.