Alaux, P.-L., César, V., Naveau, F., Cranenbrouck, S. and Declerck, S. 2018. Impact of
Rhizophagus irregularis MUCL 41833 on disease symptoms caused by
Phytophthora infestans in potato grown under field conditions.
Crop Prot 107:26-33.
Aravind, R., Kumar, A., Eapen, S. J. and Ramana, K. V. 2009. Endophytic bacterial flora in root and stem tissues of black pepper (
Piper nigrum L.) genotype: isolation, identification and evaluation against
Phytophthora capsici
.
Lett. Appl. Microbiol 48:58-64.
Arora, N. K., Kim, M. J., Kang, S. C. and Maheshwari, D. K. 2007. Role of chitinase and β-1,3-glucanase activities produced by a fluorescent pseudomonad and
in vitro inhibition of
Phytophthora capsici and
Rhizoctonia solani
.
Can. J. Microbiol 53:207-212.
Barahona, E., Navazo, A., Martínez-Granero, F., Zea-Bonilla, T., Pérez-Jiménez, R. M., Martín, M. and Rivilla, R. 2011.
Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens.
Appl. Environ. Microbiol 77:5412-5419.
Barnhoorn, I. and van Dyk, C. 2020. The first report of selected herbicides and fungicides in water and fish from a highly utilized and polluted freshwater urban impoundment.
Environ. Sci. Pollut. Res 27:33393-33398.
Barratt, B. I. P., Moran, V. C., Bigler, F. and van Lenteren, J. C. 2018. The status of biological control and recommendations for improving uptake for the future.
BioControl 63:155-167.
Chemeltorit, P. P., Mutaqin, K. H. and Widodo, W. 2017. Combining
Trichoderma hamatum THSW13 and
Pseudomonas aeruginosa BJ10-86: a synergistic chili pepper seed treatment for
Phytophthora capsici infested soil.
Eur. J. Plant Pathol 147:157-166.
Chowdhury, S. P., Khanna, S., Verma, S. C. and Tripathi, A. K. 2004. Molecular diversity of tannic acid degrading bacteria isolated from tannery soil.
J. Appl. Microbiol 97:1210-1219.
De Vrieze, M., Germanier, F., Vuille, N. and Weisskopf, L. 2018. Combining different potato-associated
Pseudomonas strains for improved biocontrol of
Phytophthora infestans
.
Front. Microbiol 9:2573.
Dietz, S., Herz, K., Gorzolka, K., Jandt, U., Bruelheide, H. and Scheel, D. 2020. Root exudate composition of grass and forb species in natural grasslands.
Sci. Rep 10:10691.
Dutta, S. and Lee, Y. H. 2022. High-throughput identification of genes influencing the competitive ability to obtain nutrients and performance of biocontrol in
Pseudomonas putida JBC17.
Sci. Rep 12:872.
Faramarzi, M. A. and Brandl, H. 2006. Formation of water-soluble metal cyanide complexes from solid minerals by
Pseudomonas plecoglossicida
.
FEMS Microbiol. Lett 259:47-52.
Gao, S., Wu, H., Yu, X., Qian, L. and Gao, X. 2016. Swarming motility plays the major role in migration during tomato root colonization by
Bacillus subtilis SWR01.
Biol. Control 98:11-17.
Guyer, A., De Vrieze, M., Bönisch, D., Gloor, R., Musa, T., Bodenhausen, N., Bailly, A. and Weisskopf, L. 2015. The anti-
Phytophthora effect of selected potato-associated
Pseudomonas strains: from the laboratory to the field.
Front. Microbiol 6:1309.
Hamon, M. A. and Lazazzera, B. A. 2001. The sporulation transcription factor Spo0A is required for biofilm development in
Bacillus subtilis
.
Mol. Microbiol 42:1199-1209.
Hausbeck, M. K. and Lamour, K. H. 2004.
Phytophthora capsici on vegetable crops: research progress and management challenges.
Plant Dis 88:1292-1303.
Herrera, H., Fuentes, A., Soto, J., Valadares, R. and Arriagada, C. 2020. Orchid-associated bacteria and their plant growth promotion capabilities. In:
Orchids phytochemistry, biology and horticulture: fundamentals and applications, eds. by J.-M. Merillon and H. Kodja, pp. 175-200. Springer, Cham, Switzerland.
Huang, L., Liu, W., Jiang, Q., Zuo, Y., Su, Y., Zhao, L., Qin, Y. and Yan, Q. 2018. Integration of transcriptomic and proteomic approaches reveals the temperature-dependent virulence of
Pseudomonas plecoglossicida
.
Front. Cell. Infect. Microbiol 8:207.
Hunziker, L., Bönisch, D., Groenhagen, U., Bailly, A., Schulz, S. and Weisskopf, L. 2015.
Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of
Phytophthora infestans
.
Appl. Environ. Microbiol 81:821-830.
Hyder, S., Gondal, A. S., Rizvi, Z. F., Ahmad, R., Alam, M. M., Hannan, A., Ahmed, W., Fatima, N. and Inam-ul-Haq, M. 2020. Characterization of native plant growth promoting rhizobacteria and their anti-oomycete potential against
Phytophthora capsici affecting chilli pepper (
Capsicum annuum L.).
Sci. Rep 10:13859.
Jeong, J.-J., Park, B. H., Park, H., Choi, I.-G. and Kim, K. D. 2016. Draft genome sequence of
Chryseobacterium sp. strain GSE06, a biocontrol endophytic bacterium isolated from cucumber (
Cucumis sativus).
Genome Announc 4:e00577-16.
Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Azarova, T., Makarova, N. and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria.
Mol. Plant-Microbe Interact 19:250-256.
Kim, H. S., Sang, M. K., Jeun, Y.-C., Hwang, B. K. and Kim, K. D. 2008. Sequential selection and efficacy of antagonistic rhizobacteria for controlling Phytophthora blight of pepper.
Crop Prot 27:436-443.
Kim, Y. J., Hwang, B. K. and Park, K. W. 1989. Expression of age-related resistance in pepper plants infected with
Phytophthora capsici
.
Plant Dis 73:745-747.
Köhl, J., Kolnaar, R. and Ravensberg, W. J. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy.
Front. Plant Sci 10:845.
Levene, H. 1960. Contributions to probability and statistics: essays in honor of harold hotelling. Stanford University Press, Stanford, CA, USA. pp. 517.
Li, S., Zhang, N., Zhang, Z., Luo, J., Shen, B., Zhang, R. and Shen, Q. 2013. Antagonist
Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation.
Biol. Fertil. Soils 49:295-303.
Li, Y., Feng, X., Wang, X., Zheng, L. and Liu, H. 2020. Inhibitory effects of
Bacillus licheniformis BL06 on
Phytophthora capsici in pepper by multiple modes of action.
Biol. Control 144:104210.
Lim, J.-H. and Kim, S.-D. 2010. Biocontrol of Phytophthora blight of red pepper caused by
Phytophthora capsici using
Bacillus subtilis AH18 and
B. licheniformis K11 formulations.
J. Korean Soc. Appl. Biol. Chem 53:766-773.
Ma, L., Zheng, S. C., Zhang, T. K., Liu, Z. Y., Wang, X. J., Zhou, X. K., Yang, C. G., Duo, J. L. and Mo, M. H. 2018. Effect of nicotine from tobacco root exudates on chemotaxis, growth, biocontrol efficiency, and colonization by
Pseudomonas aeruginosa NXHG29.
Antonie Van Leeuwenhoek 111:1237-1257.
Mannaa, M., Oh, J. Y. and Kim, K. D. 2017. Biocontrol activity of volatile-producing
Bacillus megaterium and
Pseudomonas protegens against
Aspergillus flavus and aflatoxin production on stored rice grains.
Mycobiology 45:213-219.
Marley, J., Lu, M. and Bracken, C. 2001. A method for efficient isotopic labeling of recombinant proteins.
J. Biomol. NMR 20:71-75.
Meyer, J.-M., Geoffroy, V. A., Baida, N., Gardan, L., Izard, D., Lemanceau, P., Achouak, W. and Palleroni, N. J. 2002. Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads.
Appl. Environ. Microbiol 68:2745-2753.
Ngo, V. A., Wang, S.-L., Nguyen, V. B., Doan, C. T., Tran, T. N., Tran, D. M., Tran, T. D. and Nguyen, A. D. 2020.
Phytophthora antagonism of endophytic bacteria isolated from roots of black pepper (
Piper nigrum L.).
Agronomy 10:286.
Nishimori, E., Kita-Tsukamoto, K. and Wakabayashi, H. 2000.
Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu,
Plecoglossus altivelis
.
Int. J. Syst. Evol. Microbiol 50:83-89.
Oliver, C., Hernández, I., Caminal, M., Lara, J. M. and Fernàndez, C. 2019.
Pseudomonas putida strain B2017 produced as technical grade active ingredient controls fungal and bacterial crop diseases.
Biocontrol Sci. Technol 29:1053-1068.
O’Toole, G. A., Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B. and Kolter, R. 1999. Genetic approaches to study of biofilms.
Methods Enzymol 310:91-109.
Park, M. S., Jung, S. R., Lee, M. S., Kim, K. O., Do, J. O., Lee, K. H., Kim, S. B. and Bae, K. S. 2005. Isolation and characterization of bacteria associated with two sand dune plant species,
Calystegia soldanella and
Elymus mollis
.
J. Microbiol 43:219-227.
Parra, G. and Ristaino, J. B. 2001. Resistance to mefenoxam and metalaxyl among field isolates of
Phytophthora capsici causing Phytophthora blight of bell pepper.
Plant Dis 85:1069-1075.
Raio, A., Brilli, F., Baraldi, R., Neri, L. and Puopolo, G. 2020. Impact of spontaneous mutations on physiological traits and biocontrol activity of
Pseudomonas chlororaphis M71.
Microbiol. Res 239:126517.
Sang, M. K. and Kim, K. D. 2014. Biocontrol activity and root colonization by
Pseudomonas corrugata strains CCR04 and CCR80 against Phytophthora blight of pepper.
BioControl 59:437-448.
Sang, M. K., Shrestha, A., Kim, D.-Y., Park, K., Pak, C. H. and Kim, K. D. 2013. Biocontrol of Phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against
Phytophthora capsici
.
Plant Pathol. J 29:154-167.
Sheoran, N., Nadakkakath, A. V., Munjal, V., Kundu, A., Subaharan, K., Venugopal, V., Rajamma, S., Eapen, S. J. and Kumar, A. 2015. Genetic analysis of plant endophytic
Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds.
Microbiol. Res 173:66-78.
Singh, M., Mersie, W. and Brlansky, R. H. 2003. Phytotoxicity of the fungicide metalaxyl and its optical isomers.
Plant Dis 87:1144-1147.
Sun, D., Zhuo, T., Hu, X., Fan, X. and Zou, H. 2017. Identification of a
Pseudomonas putida as biocontrol agent for tomato bacterial wilt disease.
Biol. Control 114:45-50.
Thind, T. S. and Hollomon, D. W. 2018. Thiocarbamate fungicides: reliable tools in resistance management and future outlook.
Pest Manag. Sci 74:1547-1551.
Van de Broek, A., Lambrecht, M. and Vanderleyden, J. 1998. Bacterial chemotactic motility is important for the initiation of wheat root colonization by
Azospirillum brasilense
.
Microbiology 144:2599-2606.
Vančura, V. and Hovadík, A. 1965. Root exudates of plants: II. Composition of root exudates of some vegetables.
Plant Soil 22:21-32.
Vogel, G., Gore, M. A. and Smart, C. D. 2021. Genome-wide association study in New York
Phytophthora capsici isolates reveals loci involved in mating type and mefenoxam sensitivity.
Phytopathology 111:204-216.
Volynchikova, E. and Kim, K. D. 2022. Biological control of oomycete soilborne diseases caused by
Phytophthora capsici,
Phytophthora infestans, and
Phytophthora nicotianae in solanaceous crops.
Mycobiology 50:269-293.
Zhai, Y., Shao, Z., Cai, M., Zheng, L., Li, G., Huang, D., Cheng, W., Thomashow, L. S., Weller, D. M., Yu, Z. and Zhang, J. 2018. Multiple modes of nematode control by volatiles of
Pseudomonas putida 1A00316 from Antarctic soil against
Meloidogyne incognita
.
Front. Microbiol 9:253.