Ádám, A. L., Kohut, G. and Hornok, L. 2008. Fphog1, a HOG-type MAP kinase gene, is involved in multistress response in
Fusarium proliferatum.
J Basic Microbiol. 48:151-159.
Angel, P., Allegretto, E. A., Okino, S. T., Hattori, K., Boyle, W. J., Hunter, T. and Karin, M. 1988. Oncogene
jun encodes a sequence-specific trans-activator similar to AP-1.
Nature 332:166-171.
Angelova, P. R. and Abramov, A. Y. 2018. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration.
FEBS Lett. 592:692-702.
Avery, S. V. 2001. Metal toxicity in yeasts and the role of oxidative stress.
Adv. Appl. Microbiol. 49:111-142.
Avery, S. V. 2011. Molecular targets of oxidative stress.
Biochem. J. 434:201-210.
Baker, R. D., Cook, C. O. and Goodwin, D. C. 2006. Catalase-peroxidase active site restructuring by a distant and “inactive” domain.
Biochemistry 45:7113-7121.
Boller, T. and He, S. Y. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens.
Science 324:742-744.
Buck, V., Quinn, J., Pino, T. S., Martin, H., Saldanha, J., Makino, K., Morgan, B. A. and Millar, J. B. A. 2001. Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway.
Mol. Biol. Cell 12:407-419.
Bussink, H.-J. and Oliver, R. 2001. Identification of two highly divergent catalase genes in the fungal tomato pathogen,
Cladosporium fulvum.
Eur. J. Biochem. 268:15-24.
Charizanis, C., Juhnke, H., Krems, B. and Entian, K.-D. 1999. The oxidative stress response mediated via Pos9/Skn7 is negatively regulated by the Ras/PKA pathway in
Saccharomyces cerevisiae.
Mol. Gen. Genet. 261:740-752.
Chen, L.-H., Lin, C.-H. and Chung, K.-R. 2012. Roles for SKN7 response regulator in stress resistance, conidiation and virulence in the citrus pathogen
Alternaria alternata.
Fungal Genet. Biol. 49:802-813.
Chen, R. E. and Thorner, J. 2007. Function and regulation in MAPK signaling pathways: lessons learned from the yeast
Saccharomyces cerevisiae.
Biochim. Biophys. Acta 1773:1311-1340.
Clempus, R. E. and Griendling, K. K. 2006. Reactive oxygen species signaling in vascular smooth muscle cells.
Cardiovasc. Res. 71:216-225.
Couto, N., Wood, J. and Barber, J. 2016. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network.
Free Radic. Biol. Med. 95:27-42.
Cui, H., Tsuda, K. and Parker, J. E. 2015. Effector-triggered immunity: from pathogen perception to robust defense.
Annu. Rev. Plant Biol. 66:487-511.
D’Autréaux, B. and Toledano, M. B. 2007. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis.
Nat. Rev. Mol. Cell Biol. 8:813-824.
del Río, L. A. and López-Huertas, E. 2016. ROS generation in peroxisomes and its role in cell signaling.
Plant Cell Physiol. 57:1364-1376.
Delaunay, A., Isnard, A.-D. and Toledano, M. B. 2000. H
2O
2 sensing through oxidation of the Yap1 transcription factor.
EMBO J. 19:5157-5166.
Delaunay, A., Pflieger, D., Barrault, M.-B., Vinh, J. and Toledano, M. B. 2002. A thiol peroxidase is an H
2O
2 receptor and redox-transducer in gene activation.
Cell 111:471-481.
Delledonne, M., Zeier, J., Marocco, A. and Lamb, C. 2001. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response.
Proc. Natl. Acad. Sci. U. S. A. 98:13454-13459.
Fang, G.-C., Hanau, R. M. and Vaillancourt, L. J. 2002. The SOD2 gene, encoding a manganese-type superoxide dismutase, is up-regulated during conidiogenesis in the plant-pathogenic fungus
Colletotrichum graminicola.
Fungal Genet. Biol. 36:155-165.
Fang, Y., Xiong, D., Tian, L., Tang, C., Wang, Y. and Tian, C. 2017. Functional characterization of two bZIP transcription factors in
Verticillium dahliae.
Gene 626:386-394.
Feng, H., Xu, M., Gao, Y., Liang, J., Guo, F., Guo, Y. and Huang, L. 2021. Vm-milR37 contributes to pathogenicity by regulating glutathione peroxidase gene VmGP in
Valsa mali.
Mol. Plant Pathol. 22:243-254.
Fernandez, J. and Wilson, R. A. 2014. Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of
Magnaporthe oryzae during rice blast disease.
PLoS ONE 9:e87300.
Fraaije, M. W., Roubroeks, H. P., Hagen, W. R. and Van Berkel, W. J. 1996. Purification and characterization of an intracellular catalase-peroxidase from
Penicillium simplicissimum.
Eur. J. Biochem. 235:192-198.
Fridovich, I. 1986. Superoxide dismutases.
Adv. Enzymol. Relat. Areas Mol. Biol. 58:61-97.
Gacto, M., Soto, T., Vicente-Soler, J., Villa, T. G. and Cansado, J. 2003. Learning from yeasts: intracellular sensing of stress conditions.
Int. Microbiol. 6:211-219.
Gao, S., Gold, S. E. and Glenn, A. E. 2018. Characterization of two catalase-peroxidase-encoding genes in
Fusarium verticillioides reveals differential responses to
in vitro versus in planta oxidative challenges.
Mol. Plant Pathol. 19:1127-1139.
García-Caparrós, P., De Filippis, L., Gul, A., Hasanuzzaman, M., Ozturk, M., Altay, V. and Lao, M. T. 2021. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review.
Bot. Rev. 87:421-466.
Gullner, G. and Kömives, T. 2001. The role of glutathione and glutathione-related enzymes in plant-pathogen interactions. In:
Significance of glutathione to plant adaptation to the environment, eds. by D. Grill, M. Tausz and L. J. De Kok, pp. 207-239. Kluwer Academic Publishers, Dordrecht, Germany.
Guo, M., Chen, Y., Du, Y., Dong, Y., Guo, W., Zhai, S., Zhang, H., Dong, S., Zhang, Z., Wang, Y., Wang, P. and Zheng, X. 2011. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus
Magnaporthe oryzae.
PLoS Pathog. 7:e1001302.
Guo, Y., Yao, S., Yuan, T., Wang, Y., Zhang, D. and Tang, W. 2019. The spatiotemporal control of KatG2 catalase-peroxidase contributes to the invasiveness of
Fusarium graminearum in host plants.
Mol. Plant Pathol. 20:685-700.
Hansberg, W., Salas-Lizana, R. and Domínguez, L. 2012. Fungal catalases: function, phylogenetic origin and structure.
Arch. Biochem. Biophys. 525:170-180.
He, X.-J., Mulford, K. E. and Fassler, J. S. 2009. Oxidative stress function of the
Saccharomyces cerevisiae Skn7 receiver domain.
Eukaryot. Cell 8:768-778.
Huang, K., Czymmek, K. J., Caplan, J. L., Sweigard, J. A. and Donofrio, N. M. 2011.
HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus.
PLoS Pathog. 7:e1001335.
Huang, Z., Lu, J., Liu, R., Wang, P., Hu, Y., Fang, A., Yang, Y., Qing, L., Bi, C. and Yu, Y. 2021.
SsCat2 encodes a catalase that is critical for the antioxidant response, QoI fungicide sensitivity, and pathogenicity of
Sclerotinia sclerotiorum.
Fungal Genet. Biol. 149:103530.
Ikner, A. and Shiozaki, K. 2005. Yeast signaling pathways in the oxidative stress response.
Mutat Res. 569:13-27.
Irieda, H., Inoue, Y., Mori, M., Yamada, K., Oshikawa, Y., Saitoh, H., Uemura, A., Terauchi, R., Kitakura, S., Kosaka, A., Singkaravanit-Ogawa, S. and Takano, Y. 2019. Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases.
Proc. Natl. Acad. Sci. U. S. A. 116:496-505.
Jiang, C., Zhang, S., Zhang, Q., Tao, Y., Wang, C. and Xu, J.-R. 2015. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in
Fusarium graminearum.
Environ. Microbiol. 17:1245-1260.
Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system.
Nature 444:323-329.
Kadota, Y., Liebrand, T. W. H., Goto, Y., Sklenar, J., Derbyshire, P., Menke, F. LH., Torres, M.-A., Molina, A., Zipfel, C., Coaker, G. and Shirasu, K. 2019. Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants.
New Phytol. 221:2160-2175.
Kadota, Y., Shirasu, K. and Zipfel, C. 2015. Regulation of the NADPH oxidase RBOHD during plant immunity.
Plant Cell Physiol. 56:1472-1480.
Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J. D., Shirasu, K., Menke, F., Jones, A. and Zipfel, C. 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity.
Mol. Cell 54:43-55.
Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E. and Shibuya, N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor.
Proc. Natl. Acad. Sci. U. S. A. 103:11086-11091.
Kaserer, A. O., Andi, B., Cook, P. F. and West, A. H. 2009. Effects of osmolytes on the SLN1-YPD1-SSK1 phosphorelay system from
Saccharomyces cerevisiae.
Biochemistry 48:8044-8050.
Kinseth, M. A., Anjard, C., Fuller, D., Guizzunti, G., Loomis, W. F. and Malhotra, V. 2007. The Golgi-associated protein GRASP is required for unconventional protein secretion during development.
Cell 130:524-534.
Kuge, S., Jones, N. and Nomoto, A. 1997. Regulation of yAP-1 nuclear localization in response to oxidative stress.
EMBO J. 16:1710-1720.
Lawrence, C. L., Maekawa, H., Worthington, J. L., Reiter, W., Wilkinson, C. R. M. and Jones, N. 2007. Regulation of
Schizosaccharomyces pombe Atf1 protein levels by Sty1-mediated phosphorylation and heterodimerization with Pcr1.
J. Biol. Chem. 282:5160-5170.
Lee, C. G., Da Silva, C. A., Lee, J.-Y., Hartl, D. and Elias, J. A. 2008. Chitin regulation of immune responses: an old molecule with new roles.
Curr. Opin. Immunol. 20:684-689.
Lee, Y., Min, K., Son, H., Park, A. R., Kim, J.-C., Choi, G. J. and Lee, Y.-W. 2014. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in
Fusarium graminearum.
Mol. Plant-Microbe Interact. 27:1344-1355.
Lee, Y., Son, H., Shin, J. Y., Choi, G. J. and Lee, Y.-W. 2018. Genome-wide functional characterization of putative peroxidases in the head blight fungus
Fusarium graminearum.
Mol. Plant Pathol. 19:715-730.
Lev, S., Hadar, R., Amedeo, P., Baker, S. E., Yoder, O. C. and Horwitz, B. A. 2005. Activation of an AP1-like transcription factor of the maize pathogen
Cochliobolus heterostrophus in response to oxidative stress and plant signals.
Eukaryot. Cell 4:443-454.
Levin, D. E. 2011. Regulation of cell wall biogenesis in
Saccharomyces cerevisiae: the cell wall integrity signaling pathway.
Genetics 189:1145-1175.
Levin, D. E. 2005. Cell wall integrity signaling in
Saccharomyces cerevisiae.
Microbiol. Mol. Biol. Rev. 69:262-291.
Li, J., Zhang, Z.-G., Ji, R., Wang, Y.-C. and Zheng, X.-B. 2005. Hydrogen peroxide regulates elicitor PB90-induced cell death and defense in non-heading Chinese cabbage.
Physiol. Mol. Plant Pathol. 67:220-230.
Li, S., Dean, S., Li, Z., Horecka, J., Deschenes, R. J. and Fassler, J. S. 2002. The eukaryotic two-component histidine kinase Sln1p regulates OCH1 via the transcription factor, Skn7p.
Mol. Biol. Cell 13:412-424.
Li, T., Huang, C.-M., Zhang, D.-D., Li, R., Chen, J.-Y., Sun, W.-X., Qiu, N.-W. and Dai, X.-F. 2021. Extracellular superoxide dismutase VdSOD5 is required for virulence in
Verticillium dahliae.
J. Integr. Agric. 20:1858-1870.
Li, X., Wu, Y., Liu, Z. and Zhang, C. 2017. The function and transcriptome analysis of a bZIP transcription factor CgAP1 in
Colletotrichum gloeosporioides.
Microbiol. Res. 197:39-48.
Lin, C.-H. and Chung, K.-R. 2010. Specialized and shared functions of the histidine kinase- and HOG1 MAP kinase-mediated signaling pathways in
Alternaria alternata, a filamentous fungal pathogen of citrus.
Fungal Genet. Biol. 47:818-827.
Lin, C.-H., Yang, S. L. and Chung, K.-R. 2009. The YAP1 homolog-mediated oxidative stress tolerance is crucial for pathogenicity of the necrotrophic fungus
Alternaria alternata in citrus.
Mol. Plant-Microbe Interact. 22:942-952.
Lin, C.-H., Yang, S. L. and Chung, K.-R. 2011. Cellular responses required for oxidative stress tolerance, colonization, and lesion formation by the necrotrophic fungus
Alternaria alternata in citrus.
Curr. Microbiol. 62:807-815.
Liu, J., Guan, T., Zheng, P., Chen, L., Yang, Y., Huai, B., Li, D., Chang, Q., Huang, L. and Kang, Z. 2016. An extracellular Zn-only superoxide dismutase from
Puccinia striiformis confers enhanced resistance to host-derived oxidative stress.
Environ. Microbiol. 18:4118-4135.
Liu, X., Zhou, Q., Guo, Z., Liu, P., Shen, L., Chai, N., Qian, B., Cai, Y., Wang, W., Yin, Z., Zhang, H., Zheng, X. and Zhang, Z. 2020. A self-balancing circuit centered on MoOsm1 kinase governs adaptive responses to host-derived ROS in
Magnaporthe oryzae.
eLife 9:e61605.
López-Cruz, J., Óscar, C.-S., Emma, F.-C., Pilar, G.-A. and Carmen, G.-B. 2017. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces
Botrytis cinerea virulence in
Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways.
Mol. Plant Pathol. 18:16-31.
Ma, H., Wang, M., Gai, Y., Fu, H., Zhang, B., Ruan, R., Chung, K.-R. and Li, H. 2018. Thioredoxin and glutaredoxin systems required for oxidative stress resistance, fungicide sensitivity, and virulence of
Alternaria alternata.
Appl. Environ. Microbiol. 84:e00086-18.
Macia, J., Regot, S., Peeters, T., Conde, N., Solé, R. and Posas, F. 2009. Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal transduction.
Sci. Signal 2:ra13.
Marcec, M. J., Gilroy, S., Poovaiah, B. W. and Tanaka, K. 2019. Mutual interplay of Ca
2+ and ROS signaling in plant immune response.
Plant Sci. 283:343-354.
McCord, J. M. and Fridovich, I. 1969. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein).
J. Biol. Chem. 244:6049-6055.
McCubrey, J. A., LaHair, M. M. and Franklin, R. A. 2006. Reactive oxygen species-induced activation of the MAP kinase signaling pathways.
Antioxid. Redox Signal 8:1775-1789.
Meister, A. and Anderson, M. E. 1983. Glutathione.
Annu. Rev. Biochem. 52:711-760.
Mir, A. A., Park, S.-Y., Sadat, M. A., Kim, S., Choi, J., Jeon, J. and Lee, Y.-H. 2015. Systematic characterization of the peroxidase gene family provides new insights into fungal pathogenicity in
Magnaporthe oryzae.
Sci. Rep. 5:11831.
Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V. B., Vandepoele, K., Gollery, M., Shulaev, V. and Van Breusegem, F. 2011. ROS signaling: the new wave?
Trends Plant Sci. 16:300-309.
Molina, L. and Kahmann, R. 2007. An
Ustilago maydis gene involved in H
2O
2 detoxification is required for virulence.
Plant Cell 19:2293-2309.
Montibus, M., Ducos, C., Bonnin-Verdal, M.-N., Bormann, J., Ponts, N., Richard-Forget, F. and Barreau, C. 2013. The bZIP transcription factor Fgap1 mediates oxidative stress response and trichothecene biosynthesis but not virulence in
Fusarium graminearum.
PLoS ONE 8:e83377.
Moore, S., De Vries, O. M. H. and Tudzynski, P. 2002. The major Cu,Zn SOD of the phytopathogen
Claviceps purpurea is not essential for pathogenicity.
Mol. Plant Pathol. 3:9-22.
Morgan, B. A., Banks, G. R., Toone, W. M., Raitt, D., Kuge, S. and Johnston, L. H. 1997. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast
Saccharomyces cerevisiae.
EMBO J. 16:1035-1044.
Moriwaki, A., Kubo, E., Arase, S. and Kihara, J. 2006. Disruption of SRM1, a mitogen-activated protein kinase gene, affects sensitivity to osmotic and ultraviolet stressors in the phytopathogenic fungus
Bipolaris oryzae.
FEMS Microbiol. Lett. 257:253-261.
Mulford, K. E. and Fassler, J. S. 2011. Association of the Skn7 and Yap1 transcription factors in the
Saccharomyces cerevisiae oxidative stress response.
Eukaryot. Cell 10:761-769.
Nathues, E., Joshi, S., Tenberge, K. B., von den Driesch, M., Oeser, B., Bäumer, N., Mihlan, M. and Tudzynski, P. 2004. CPTF1, a CREB-like transcription factor, is involved in the oxidative stress response in the phytopathogen
Claviceps purpurea and modulates ROS level in its host
Secale cereale.
Mol. Plant-Microbe Interact. 17:383-393.
Nguyen, T. V., Schäfer, W. and Bormann, J. 2012. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen
Fusarium graminearum.
Mol. Plant-Microbe Interact. 25:1142-1156.
Nicholls, P. 2012. Classical catalase: ancient and modern.
Arch. Biochem. Biophys. 525:95-101.
Nickel, W. 2003. The mystery of nonclassical protein secretion: a current view on cargo proteins and potential export.
Eur. J. Biochem. 270:2109-2119.
O’Rourke, S. M. and Herskowitz, I. 2004. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis.
Mol. Biol. Cell 15:532-542.
Park, J., Han, J. W., Lee, N., Kim, S., Choi, S., Lee, H.-H., Kim, J.-E., Seo, Y.-S., Choi, G. J., Lee, Y.-W., Kim, H. and Son, H. 2024. Sulfur metabolism-mediated fungal glutathione biosynthesis is essential for oxidative stress resistance and pathogenicity in the plant pathogenic fungus
Fusarium graminearum.
mBio 15:e0240123.
Park, J., Lee, H.-H., Moon, H., Lee, N., Kim, S., Kim, J.-E., Lee, Y., Min, K., Kim, H., Choi, G. J., Lee, Y.-W., Seo, Y.-S. and Son, H. 2023. A combined transcriptomic and physiological approach to understanding the adaptive mechanisms to cope with oxidative stress in
Fusarium graminearum.
Microbiol. Spectr. 11:e0148523.
Peng, Y., van Wersch, R. and Zhang, Y. 2018. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity.
Mol. Plant-Microbe Interact. 31:403-409.
Posas, F., Wurgler-Murphy, S. M., Maeda, T., Witten, E. A., Thai, T. C. and Saito, H. 1996. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor.
Cell 86:865-875.
Qi, M. and Elion, E. A. 2005. MAP kinase pathways.
J. Cell. Sci. 118:3569-3572.
Qi, X., Guo, L., Yang, L. and Huang, J. 2013. Foatf1, a bZIP transcription factor of
Fusarium oxysporum f. sp.
cubense, is involved in pathogenesis by regulating the oxidative stress responses of Cavendish banana (
Musa spp.).
Physiol. Mol. Plant Pathol. 84:76-85.
Quinn, J., Findlay, V. J., Dawson, K., Millar, J. B. A., Jones, N., Morgan, B. A. and Toone, W. M. 2002. Distinct regulatory proteins control the graded transcriptional response to increasing H
2O
2 levels in fission yeast
Schizosaccharomyces pombe.
Mol. Biol. Cell 13:805-816.
Raffaello, T., Keriö, S. and Asiegbu, F. O. 2012. Role of the HaHOG1 MAP kinase in response of the conifer root and but rot pathogen (
Heterobasidion annosum) to osmotic and oxidative stress.
PLoS ONE 7:e31186.
Reczek, C. R. and Chandel, N. S. 2015. ROS-dependent signal transduction.
Curr. Opin. Cell Biol. 33:8-13.
Rep, M., Proft, M., Remize, F., Tamás, M., Serrano, R., Thevelein, J. M. and Hohmann, S. 2001. The
Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage.
Mol. Microbiol. 40:1067-1083.
Robbertse, B., Yoder, O. C., Nguyen, A., Schoch, C. L. and Turgeon, B. G. 2003. Deletion of all
Cochliobolus heterostrophus monofunctional catalase-encoding genes reveals a role for one in sensitivity to oxidative stress but none with a role in virulence.
Mol. Plant-Microbe Interact. 16:1013-1021.
Salat-Canela, C., Paulo, E., Sánchez-Mir, L., Carmona, M., Ayté, J., Oliva, B. and Hidalgo, E. 2017. Deciphering the role of the signal- and Sty1 kinase-dependent phosphorylation of the stress-responsive transcription factor Atf1 on gene activation.
J. Biol. Chem. 292:13635-13644.
Sanabria, N. M., Huang, J.-C. and Dubery, I. A. 2010. Self/non-self perception in plants in innate immunity and defense.
Self Nonself 1:40-54.
Santos-Sánchez, N. F., Salas-Coronado, R., Villanueva-Cañongo, C. and Hernández-Carlos, B. 2019. Antioxidant compounds and their antioxidant mechanism. In:
Antioxidants, eds. by E. Shalaby, pp. 1-28. IntechOpen, London, UK.
Schieber, M. and Chandel, N. S. 2014. ROS function in redox signaling and oxidative stress.
Curr. Biol. 24:R453-R462.
Schouten, A., Tenberge, K. B., Vermeer, J., Stewart, J., Wagemakers, L., Williamson, B. and Van Kan, J. A. L. 2002. Functional analysis of an extracellular catalase of
Botrytis cinerea.
Mol. Plant Pathol. 3:227-238.
Schreiber, K. J., Chau-Ly, I. J. and Lewis, J. D. 2021. What the wild things do: mechanisms of plant host manipulation by bacterial type III-secreted effector proteins.
Microorganisms 9:1029.
Schwessinger, B. and Zipfel, C. 2008. News from the frontline: recent insights into PAMP-triggered immunity in plants.
Curr. Opin. Plant Biol. 11:389-395.
Seger, R. and Krebs, E. G. 1995. The MAPK signaling cascade.
FASEB J. 9:726-735.
Segmüller, N., Ellendorf, U., Tudzynski, B. and Tudzynski, P. 2007. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in
Botrytis cinerea.
Eukaryot. Cell 6:211-221.
Shalaby, S., Larkov, O., Lamdan, N. L. and Horwitz, B. A. 2014. Genetic interaction of the stress response factors ChAP1 and Skn7 in the maize pathogen
Cochliobolus heterostrophus.
FEMS Microbiol. Lett. 350:83-89.
Skamnioti, P., Henderson, C., Zhang, Z., Robinson, Z. and Gurr, S. J. 2007. A novel role for catalase B in the maintenance of fungal cell-wall integrity during host invasion in the rice blast fungus
Magnaporthe grisea.
Mol. Plant-Microbe Interact. 20:568-580.
Smith, D. A., Morgan, B. A. and Quinn, J. 2010. Stress signalling to fungal stress-activated protein kinase pathways.
FEMS Microbiol. Lett. 306:1-8.
Snelders, N. C., Rovenich, H., Petti, G. C., Rocafort, M., van den Berg, G. C. M., Vorholt, J. A., Mesters, J. R., Seidl, M. F., Nijland, R. and Thomma, B. P. H. J. 2020. Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins.
Nat. Plants 6:1365-1374.
Son, Y., Cheong, Y.-K., Kim, N.-H., Chung, H.-T., Kang, D. G. and Pae, H.-O. 2011. Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways?
J. Signal Transduct. 2011:792639.
Srinivas, U. S., Tan, B. W., Vellayappan, B. A. and Jeyasekharan, A. D. 2019. ROS and the DNA damage response in cancer.
Redox Biol. 25:101084.
Stadtman, E. R. and Levine, R. L. 2000. Protein oxidation.
Ann. N. Y. Acad. Sci. 899:191-208.
Sun, Y., Wang, Y. and Tian, C. 2016. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus
Colletotrichum gloeosporioides.
Fungal Genet. Biol. 95:58-66.
Suzuki, N., Miller, G., Morales, J., Shulaev, V., Torres, M. A. and Mittler, R. 2011. Respiratory burst oxidases: the engines of ROS signaling.
Curr. Opin. Plant Biol. 14:691-699.
Szabó, Z., Pákozdi, K., Murvai, K., Pusztahelyi, T., Kecskeméti, Á., Gáspár, A., Logrieco, A. F., Emri, T., Ádám, A. L., Leiter, É., Hornok, L. and Pócsi, I. 2020. FvatfA regulates growth, stress tolerance as well as mycotoxin and pigment productions in
Fusarium verticillioides.
Appl. Microbiol. Biotechnol. 104:7879-7899.
Tanabe, S., Ishii-Minami, N., Saitoh, K.-I., Otake, Y., Kaku, H., Shibuya, N., Nishizawa, Y. and Minami, E. 2011. The role of catalase-peroxidase secreted by
Magnaporthe oryzae during early infection of rice cells.
Mol. Plant-Microbe Interact. 24:163-171.
Tanabe, S., Nishizawa, Y. and Minami, E. 2009. Effects of catalase on the accumulation of H
2O
2 in rice cells inoculated with rice blast fungus,
Magnaporthe oryzae.
Physiol. Plant 137:148-154.
Tang, C., Xiong, D., Fang, Y., Tian, C. and Wang, Y. 2017. The two-component response regulator VdSkn7 plays key roles in microsclerotial development, stress resistance and virulence of
Verticillium dahliae.
Fungal Genet. Biol. 108:26-35.
Temme, N. and Tudzynski, P. 2009. Does
Botrytis cinerea ignore H
2O
2-induced oxidative stress during infection? Characterization of
Botrytis activator protein 1.
Mol. Plant-Microbe Interact. 22:987-998.
Tena, G., Boudsocq, M. and Sheen, J. 2011. Protein kinase signaling networks in plant innate immunity.
Curr. Opin. Plant Biol. 14:519-529.
Tian, L., Li, J., Huang, C., Zhang, D., Xu, Y., Yang, X., Song, J., Wang, D., Qiu, N., Short, D. PG., Inderbitzin, P., Subbarao, K. V., Chen, J. and Dai, X. 2021a. Cu/Zn superoxide dismutase (VdSOD1) mediates reactive oxygen species detoxification and modulates virulence in
Verticillium dahliae.
Mol. Plant Pathol. 22:1092-1108.
Tian, L., Sun, W., Li, J., Chen, J., Dai, X., Qiu, N. and Zhang, D. 2021b. Unconventionally secreted manganese superoxide dismutase VdSOD3 is required for the virulence of
Verticillium dahliae.
Agronomy 11:13.
Toone, W. M. and Jones, N. 1999. AP-1 transcription factors in yeast.
Curr. Opin. Genet. Dev. 9:55-61.
Toone, W. M., Morgan, B. A. and Jones, N. 2001. Redox control of AP-1-like factors in yeast and beyond.
Oncogene 20:2336-2346.
Torres, M. A. 2010. ROS in biotic interactions.
Physiol Plant 138:414-429.
Tsuda, K. and Katagiri, F. 2010. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity.
Curr. Opin. Plant Biol. 13:459-465.
Van Nguyen, T., Kröger, C., Bönnighausen, J., Schäfer, W. and Bormann, J. 2013. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen
Fusarium graminearum.
Mol. Plant-Microbe Interact. 26:1378-1394.
Veluchamy, S., Williams, B., Kim, K. and Dickman, M. B. 2012. The CuZn superoxide dismutase from
Sclerotinia sclerotiorum is involved with oxidative stress tolerance, virulence, and oxalate production.
Physiol. Mol. Plant Pathol. 78:14-23.
Viefhues, A., Schlathoelter, I., Simon, A., Viaud, M. and Tudzynski, P. 2015. Unraveling the function of the response regulator BcSkn7 in the stress signaling network of
Botrytis cinerea.
Eukaryot. Cell 14:636-651.
Vivancos, A. P., Jara, M., Zuin, A., Sansó, M. and Hidalgo, E. 2006. Oxidative stress in
Schizosaccharomyces pombe: different H
2O
2 levels, different response pathways.
Mol. Genet. Genomics 276:495-502.
Wang, Q., Pokhrel, A. and Coleman, J. J. 2021. The extracellular superoxide dismutase Sod5 from
Fusarium oxysporum is localized in response to external stimuli and contributes to fungal pathogenicity.
Front. Plant Sci. 12:608861.
Wang, W. and Jiao, F. 2019. Effectors of
Phytophthora pathogens are powerful weapons for manipulating host immunity.
Planta 250:413-425.
Wendel, A. 1980. Glutathione peroxidase.
Methods Enzymol. 77:325-333.
Whittaker, J. W. 2012. Non-heme manganese catalase: the ‘other’ catalase.
Arch. Biochem. Biophys. 525:111-120.
Wilkinson, M. G., Samuels, M., Takeda, T., Toone, W. M., Shieh, J.-C., Toda, T., Millar, J. B. and Jones, N. 1996. The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast.
Genes Dev. 10:2289-2301.
Wood, M. J., Storz, G. and Tjandra, N. 2004. Structural basis for redox regulation of Yap1 transcription factor localization.
Nature 430:917-921.
Wullschleger, S., Loewith, R. and Hall, M. N. 2006. TOR signaling in growth and metabolism.
Cell 124:471-484.
Yan, C., Lee, L. H. and Davis, L. I. 1998. Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor.
EMBO J. 17:7416-7429.
Yang, Q., Yin, D., Yin, Y., Cao, Y. and Ma, Z. 2015. The response regulator BcSkn7 is required for vegetative differentiation and adaptation to oxidative and osmotic stresses in
Botrytis cinerea.
Mol. Plant Pathol. 16:276-287.
Yang, S. L., Yu, P.-L. and Chung, K.-R. 2016. The glutathione peroxidase-mediated reactive oxygen species resistance, fungicide sensitivity and cell wall construction in the citrus fungal pathogen
Alternaria alternata.
Environ. Microbiol. 18:923-935.
Yang, Y., Bazhin, A. V., Werner, J. and Karakhanova, S. 2013. Reactive oxygen species in the immune system.
Int. Rev. Immunol. 32:249-270.
Yao, S.-H., Guo, Y., Wang, Y.-Z., Zhang, D., Xu, L. and Tang, W.-H. 2016. A cytoplasmic Cu-Zn superoxide dismutase SOD1 contributes to hyphal growth and virulence of
Fusarium graminearum.
Fungal Genet. Biol. 91:32-42.
Yarden, O., Veluchamy, S., Dickman, M. B. and Kabbage, M. 2014.
Sclerotinia sclerotiorum catalase SCAT1 affects oxidative stress tolerance, regulates ergosterol levels and controls pathogenic development.
Physiol. Mol. Plant Pathol. 85:34-41.
Yu, P.-L., Wang, C.-L., Chen, P.-Y. and Lee, M.-H. 2017. YAP1 homologue-mediated redox sensing is crucial for a successful infection by
Monilinia fructicola.
Mol. Plant Pathol. 18:783-797.
Yuan, M., Ngou, B. P. M., Ding, P. and Xin, X.-F. 2021a. PTI-ETI crosstalk: an integrative view of plant immunity.
Curr. Opin. Plant Biol. 62:102030.
Yuan, P., Qian, W., Jiang, L., Jia, C., Ma, X., Kang, Z. and Liu, J. 2021b. A secreted catalase contributes to
Puccinia striiformis resistance to host-derived oxidative stress.
Stress Biol. 1:22.
Zámocký, M., Droghetti, E., Bellei, M., Gasselhuber, B., Pabst, M., Furtmüller, P. G., Battistuzzi, G., Smulevich, G. and Obinger, C. 2012a. Eukaryotic extracellular catalase-peroxidase from
Magnaporthe grisea: biophysical/chemical characterization of the first representative from a novel phytopathogenic KatG group.
Biochimie 94:673-683.
Zamocky, M., Furtmüller, P. G., Bellei, M., Battistuzzi, G., Stadlmann, J., Vlasits, J. and Obinger, C. 2009a. Intracellular catalase/peroxidase from the phytopathogenic rice blast fungus
Magnaporthe grisea: expression analysis and biochemical characterization of the recombinant protein.
Biochem. J. 418:443-451.
Zamocky, M., Furtmüller, P. G. and Obinger, C. 2008. Evolution of catalases from bacteria to humans.
Antioxid. Redox Signal. 10:1527-1548.
Zámocký, M., Gasselhuber, B., Furtmüller, P. G. and Obinger, C. 2012b. Molecular evolution of hydrogen peroxide degrading enzymes.
Arch. Biochem. Biophys. 525:131-144.
Zarrinpar, A., Bhattacharyya, R. P., Nittler, M. P. and Lim, W. A. 2004. Sho1 and Pbs2 act as coscaffolds linking components in the yeast high osmolarity MAP kinase pathway.
Mol. Cell 14:825-832.
Zelko, I. N., Mariani, T. J. and Folz, R. J. 2002. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression.
Free Radic. Biol. Med. 33:337-349.
Zhang, H., Shen, W., Zhang, D., Shen, X., Wang, F., Hsiang, T., Liu, J. and Li, G. 2021. The bZIP transcription factor LtAP1 modulates oxidative stress tolerance and virulence in the peach gummosis fungus
Lasiodiplodia theobromae.
Front. Microbiol. 12:741842.
Zhang, Z., Henderson, C. and Gurr, S. J. 2004.
Blumeria graminis secretes an extracellular catalase during infection of barley: potential role in suppression of host defence.
Mol. Plant Pathol. 5:537-547.
Zheng, D., Zhang, S., Zhou, X., Wang, C., Xiang, P., Zheng, Q. and Xu, J.-R. 2012. The
FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in
Fusarium graminearum.
PLoS ONE 7:e49495.
Zheng, P., Chen, L., Zhong, S., Wei, X., Zhao, Q., Pan, Q., Kang, Z. and Liu, J. 2020. A Cu-only superoxide dismutase from stripe rust fungi functions as a virulence factor deployed for counter defense against host-derived oxidative stress.
Environ Microbiol. 22:5309-5326.
Zipfel, C. 2009. Early molecular events in PAMP-triggered immunity.
Curr. Opin. Plant Biol. 12:414-420.
Zipfel, C. and Felix, G. 2005. Plants and animals: a different taste for microbes?
Curr. Opin. Plant Biol. 8:353-360.