Abdallah, Y., Ogunyemi, S. O., Abdelazez, A., Zhang, M., Hong, X., Ibrahim, E., Hossain, A., Fouad, H., Li, B. and Chen, J. 2019. The green synthesis of MgO nano-flowers using
Rosmarinus officinalis L. (Rosemary) and the antibacterial activities against
Xanthomonas oryzae pv.
oryzae.
Biomed. Res. Int 2019:5620989.
Abdelrhim, A. S., Mazrou, Y. S., Nehela, Y., Atallah, O. O., El-Ashmony, R. M. and Dawood, M. F. A. 2021. Silicon dioxide nanoparticles induce innate immune responses and activate antioxidant machinery in wheat against
Rhizoctonia solani.
Plants 10:2758.
Akhtar, M. A., Ilyas, K., Dlouhý, I., Siska, F. and Boccaccini, A. R. 2020. Electrophoretic deposition of copper (II)-chitosan complexes for antibacterial coatings.
Int. J. Mol. Sci. 21:2637.
Al Banna, L. S., Salem, N. M., Jaleel, G. A. and Awwad, A. M. 2020. Green synthesis of sulfur nanoparticles using Rosmarinus officinalis leaves extract and nematicidal activity against Meloidogyne javanica. Chem. Int 6:137-143.
Anbinder, P. S., Macchi, C., Amalvy, J. and Somoza, A. 2019. A study of the structural changes in a chitosan matrix produced by the adsorption of copper and chromium ions.
Carbohydr. Polym 222:114987.
Benhabiles, M. S., Salah, R., Lounici, H., Drouiche, N., Goosen, M. F. A. and Mameri, N. 2012. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste.
Food Hydrocoll 29:48-56.
Bukola, A. M., Adepeju, I. T., Olalekan, R. M., Amazinggrace, K. I., Joyce, O. T., Abel, Y. K., Itohan, IM., Francisca, O. C. and Abiola, K. E. 2023. Efficacy of chitosan synthesized from shrimp (
Penaeus notialis) shell against
Aspergillus flavus of groundnut and wheat.
GSC Biol. Pharm. Sci. 22:235-242.
Choudhary, R. C., Kumaraswamy, R. V., Kumari, S., Sharma, S. S., Pal, A., Raliya, R., Biswas, P. and Saharan, V. 2017. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (
Zea mays L.).
Sci. Rep. 7:9754.
Clément, R., Tuan, D., Cuong, V., Van, B. L., Trung, H. Q. and Long, C. T. M. 2023. Transitioning from monoculture to mixed cropping systems: the case of coffee, pepper, and fruit trees in Vietnam.
Ecol. Econ. 214:107980.
Du, B. D., Ngoc, D. T. B., Thang, N. D., Tuan, L. N. A., Thach, B. D. and Hien, N. Q. 2019. Synthesis and
in vitro antifungal efficiency of alginate-stabilized Cu
2O-Cu nanoparticles against
Neoscytalidium dimidiatum causing brown spot disease on dragon fruit plants (
Hylocereus undatus).
Vietnam J. Chem. 57:318-323.
Duy, N. N., Phu, D. V., Anh, N. T. and Hien, N. Q. 2011. Synergistic degradation to prepare oligochitosan by γ-irradiation of chitosan solution in the presence of hydrogen peroxide.
Radiat. Phys. Chem. 80:848-853.
El-Ashry, R. M., El-Saadony, M. T., El-Sobki, A. E. A., El-Tahan, A. M., Al-Otaibi, S., El-Shehawi, A. M., Saad, A. M. and Elshaer, N. 2022. Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by
Meloidogyne incognita in eggplant.
Saudi J. Biol. Sci. 29:920-932.
Elbeshehy, E. K. F., Elazzazy, A. M. and Aggelis, G. 2015. Silver nanoparticles synthesis mediated by new isolates of
Bacillus spp., nanoparticle characterization and their activity against bean yellow mosaic virus and human pathogens.
Front. Microbiol. 6:453.
Elmer, W., Ma, C. and White, J. 2018. Nanoparticles for plant disease management.
Curr. Opin. Environ. Sci. Health 6:66-70.
Lmezayyen, E. A. S. and Reicha, F. M. 2015. Preparation of chitosan copper complexes: molecular dynamic studies of chitosan and chitosan copper complexes. Open J. Appl. Sci. 5:415-427.
Fan, Z., Qin, Y., Liu, S., Xing, R., Yu, H. and Li, P. 2020. Chitosan oligosaccharide fluorinated derivative control root-knot nematode (
Meloidogyne incognita) disease based on the multi-efficacy strategy.
Mar. Drugs 18:273.
Germida, J. J. and Janzen, H. H. 1993. Factors affecting the oxidation of elemental sulfur in soils.
Fertil. Res. 35:101-114.
Gkanatsiou, C., Ntalli, N., Menkissoglu-Spiroudi, U. and Dendrinou-Samara, C. 2019. Essential metal-based nanoparticles (copper/iron NPs) as potent nematicidal agents against Meloidogyne spp. J. Nanotechnol. Res. 1:44-58.
Gritsch, L., Lovell, C., Goldmann, W. H. and Boccaccini, A. R. 2018. Fabrication and characterization of copper (II)-chitosan complexes as antibiotic-free antibacterial biomaterial.
Carbohydr. Polym 179:370-378.
Guo, Y., Zhao, J., Yang, S., Yu, K., Wang, Z. and Zhang, H. 2006. Preparation and characterization of monoclinic sulfur nanoparticles by water-in-oil microemulsions technique.
Powder Technol. 162:83-86.
Hao, G., Hu, Y., Shi, L., Chen, J., Cui, A., Weng, W. and Osako, K. 2021. Physicochemical characteristics of chitosan from swimming crab (
Portunus trituberculatus) shells prepared by subcritical water pretreatment.
Sci. Rep. 11:1646.
Heflish, A. A., Hanfy, A. E., Ansari, M. J., Dessoky, E. S., Attia, A. O., Elshaer, M. M., Gaber, M. K., Kordy, A., Doma, A. S., Abdelkhalek, A. and Behiry, S. I. 2021. Green biosynthesized silver nanoparticles using
Acalypha wilkesiana extract control root-knot nematode.
J. King Saud Univ. Sci. 33:101516.
Hooper, D. J. 1990. Extraction and processing of plant and soil nematodes. In: Plant parasitic nematodes in subtropical and tropical agriculture, eds. by M. Luc, R. A. Sikora and J. Bridge, pp. 45-68. CAB International, Wallingford, UK.
Jepson, S. B. 1987. Indentification of root-knot nematodes (Meloidogyne species). CABI, Wallingford, UK. pp. 265.
Jiang, C.-H., Xie, P., Li, K., Xie, Y.-S., Chen, L.-J., Wang, J.-S., Xu, Q. and Guo, J.-H. 2018. Evaluation of root-knot nematode disease control and plant growth promotion potential of biofertilizer Ning shield on
Trichosanthes kirilowii in the field.
Braz. J. Microbiol. 49:232-239.
Kaman, P. K. and Dutta, P. 2019. Synthesis, characterization and antifungal activity of biosynthesized silver nanoparticle.
Indian Phytopathol. 72:79-88.
Khairan, K. and Zahraturriaz Jalil, Z. 2019. Green synthesis of sulphur nanoparticles using
Aqueous garlic extract (
Allium sativum).
Rasayan J. Chem. 12:50-57.
Khalil, A. E., Rahhal, M. M. H., El-Korany, A. E. and Balbaa, E. M. 2018. Effect of certain nanoparticles against root-knot nematode, Meloidogyne incognita, affecting, tomato plants in El-Behera governorate, Egypt. J. Agric. Environ. Sci. 17:1-34.
Khalil, M. S. and Badawy, M. E. I. 2012. Nematicidal activity of a biopolymer chitosan at different molecular weights against root-knot nematode,
Meloidogyne incognita.
Plant Prot. Sci. 48:170-178.
Khan, A., Mfarrej, M. F. B., Danish, M., Shariq, M., Khan, M. F., Ansari, M. S., Hashem, M., Alamri, S. and Ahmad, F. 2022a. Synthesized copper oxide nanoparticles via the green route act as antagonists to pathogenic root-knot nematode,
Meloidogyne incognita.
Green Chem. Lett. Rev. 15:491-507.
Khan, M., Siddiqui, Z. A., Parveen, A., Khan, A. A., Moon, I. S. and Alam, M. 2022b. Elucidating the role of silicon dioxide and titanium dioxide nanoparticles in mitigating the disease of the eggplant caused by
Phomopsis vexans,
Ralstonia solanacearum, and root-knot nematode
Meloidogyne incognita.
Nanotechnol. Rev. 11:1606-1619.
Kim, S., Kim, H. M., Seo, H. J., Yeon, J., Park, A. R., Yu, N. H., Jeong, S.-G., Chang, J. Y., Kim, J.-C. and Park, H. W. 2022. Root-knot nematode (
Meloidogyne incognita) control using a combination of
Lactiplantibacillus plantarum WiKim0090 and copper sulfate.
J. Microbiol. Biotechnol. 32:960-966.
Korthals, G. W., Bongers, T., Kammenga, J. E., Alexiev, A. D. and Lexmond, T. M. 1996. Long-term effects of copper and pH on the nematode community in an agroecosystem.
Environ. Toxicol. Chem. 15:979-985.
Krishnaraj, C., Ramachandran, R., Mohan, K. and Kalaichelvan, P. T. 2012. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta A Mol. Biomol. Spectrosc 93:95-99.
Kumar, V., Pandita, S., Sidhu, G. P. S., Sharma, A., Khanna, K., Kaur, P., Bali, A. S. and Setia, R. 2021. Copper bioavailability, uptake, toxicity, and tolerance in plants: a comprehensive review.
Chemosphere 262:127810.
Kuppusamy, S. and Karuppaiah, J. 2012. Antioxidant and cytotoxic efficacy of chitosan on bladder cancer.
Asian Pac. J. Trop. Dis. 2(Suppl 2):S769-S773.
Li, J. and Zhuang, S. 2020. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives.
Eur. Polym. J. 138:109984.
Meng, D., Garba, B., Ren, Y., Yao, M., Xia, X., Li, M. and Wang, Y. 2020. Antifungal activity of chitosan against
Aspergillus ochraceus and its possible mechanisms of action.
Int. J. Biol Macromol 158:1063-1070.
Mishra, R. K., Ha, S. K., Verma, K. and Tiwari, S. K. 2018. Recent progress in selected bio-nanomaterials and their engineering applications: an overview.
J. Sci. Adv. Mater. Devices 3:263-288.
Ngoc, D. T. B., Duy, D. B., Tuan, L. N. A., Thach, B. D., Tho, T. P. and Phu, D. V. 2021. Effect of copper ions concentration on the particle size of alginate-stabilized Cu
2O-Cu nanocolloids and its antibacterial activity against rice bacterial leaf blight (
Xanthomonas oryzae pv.
oryzae).
Adv. Nat. Sci. Nanosci. Nanotechnol 12:013001.
Ogunyemi, S. O., Zhang, M., Abdallah, Y., Ahmed, T., Qiu, W., Ali, M. A., Yan, C., Yang, Y., Chen, J. and Li, B. 2020. The bio-synthesis of three metal oxide nanoparticles (ZnO, MnO
2, and MgO) and their antibacterial activity against the bacterial leaf blight pathogen.
Front. Microbiol. 11:588326.
Özdemir, F. G. G., Çevik, H., Ndayiragije, J. C., Özek, T. and Karaca, İ. 2022. Nematicidal effect of chitosan on
Meloidogyne incognita in vitro and on tomato in a pot experiment.
Int. J. Agric. Environ. Food Sci. 6:410-416.
Paralikar, P. and Rai, M. 2018. Bio-inspired synthesis of sulphur nanoparticles using leaf extract of four medicinal plants with special reference to their antibacterial activity.
IET Nanobiotechnol 12:25-31.
Pasha, A., Kumbhakar, D. V., Sana, S. S., Ravinder, D., Lakshmi, B. V., Kalangi, S. K. and Pawar, S. C. 2022. Role of biosynthesized Ag-NPs using
Aspergillus niger (MK503444.1) in antimicrobial, anti-cancer and anti-angiogenic activities.
Front. Pharmacol 12:812474.
Qiu, M., Wu, C., Ren, G., Liang, X., Wang, X. and Huang, J. 2014. Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus.
Food Chem. 155:105-111.
Rao, K. J. and Paria, S. 2013. Use of sulfur nanoparticles as a green pesticide on
Fusarium solani and
Venturia inaequalis phytopathogens.
RSC Adv 3:10471-10478.
Rhazi, M., Desbrières, J., Tolaimate, A., Rinaudo, M., Vottero, P. and Alagui, A. 2002. Contribution to the study of the complexation of copper by chitosan and oligomers.
Polymer 43:1267-1276.
Saedi, S., Shokri, M. and Rhim, J.-W. 2020. Antimicrobial activity of sulfur nanoparticles: effect of preparation methods.
Arab. J. Chem. 13:6580-6588.
Shankar, S., Pangeni, R., Park, J. W. and Rhim, J.-W. 2018. Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect.
Mater. Sci. Eng. C 92:508-517.
Tomadoni, B., Casalongué, C. and Alvarez, V. A. 2019. Biopolymer-based hydrogels for agriculture applications: swelling behavior and slow release of agrochemicals. In:
Polymers for agri-food applications, eds. by T. Gutiérrez, pp. 99-125. Springer, Cham, Netherlands.
Tripathi, R. M., Rao, R. P. and Tsuzuki, T. 2018. Green synthesis of sulfur nanoparticles and evaluation of their catalytic detoxification of hexavalent chromium in water.
RSC Adv 8:36345-36352.
Tuan, L. N. A., Du, B. D., Ha, L. D. T., Dzung, L. T. K., Phu, D. V. and Hien, N. Q. 2019. Induction of chitinase and brown spot disease resistance by oligochitosan and nanosilica-oligochitosan in dragon fruit plants.
Agric. Res. 8:184-190.
Turganbay, S., Aidarova, S. B., Bekturganova, N. E., Alimbekova, G. K., Musabekov, K. B. and Kumargalieva, S. S. 2013. Surface-modification of sulfur nanoparticles with surfactants and application in agriculture.
Adv. Mater. Res. 785-786:475-479.
Udalova, Z. V., Folmanis, G. E., Khasanov, F. K. and Zinovieva, S. V. 2018. Selenium nanoparticles: an inducer of tomato resistance to the root-knot nematode
Meloidogyne incognita (Kofoid et White, 1919) Chitwood 1949.
Dokl. Biochem. Biophys. 482:264-267.
Wang, X., Du, Y., Fan, L., Liu, H. and Hu, Y. 2005. Chitosan-metal complexes as antimicrobial agent: synthesis, characterization and structure-activity study.
Polym. Bull 55:105-113.
Wang, X., Du, Y. and Liu, H. 2004. Preparation, characterization and antimicrobial activity of chitosan-Zn complex.
Carbohydr. Polym 56:21-26.
Wong, K. K. Y. and Liu, X. 2010. Silver nanoparticles: the real “silver bullet” in clinical medicine?
MedChemComm 1:125-131.
Wypij, M., Trzcińska-Wencel, J., Golińska, P., Avila-Quezada, G. D., Ingle, A. P. and Rai, M. 2023. The strategic applications of natural polymer nanocomposites in food packaging and agriculture: chances, challenges, and consumers’ perception.
Front. Chem. 10:1106230.
Xie, X.-Y., Li, L.-Y., Zheng, P.-S., Zheng, W.-J., Bai, Y., Cheng, T.-F. and Liu, J. 2012. Facile synthesis, spectral properties and formation mechanism of sulfur nanorods in PEG-200.
Mater. Res. Bull 47:3665-3669.
Yuan, H., Liu, Q., Guo, Z., Fu, J., Sun, Y., Gu, C., Xing, B. and Dhankher, O. P. 2021. Sulfur nanoparticles improved plant growth and reduced mercury toxicity via mitigating the oxidative stress in
Brassica napus L.
J. Cleaner Prod 318:128589.
Zhi-Hui, Y., Stöven, K., Haneklaus, S., Singh, B. R. and Schnug, E. 2010. Elemental sulfur oxidation by
Thiobacillus spp. and aerobic heterotrophic sulfur-oxidizing bacteria.
Pedosphere 20:71-79.