Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R. and Wang, M.-Q. 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications.
Toxics 9:42.
Ali, A., Bordoh, P. K., Singh, A., Siddiqui, Y. and Droby, S. 2016. Post-harvest development of anthracnose in pepper (
Capsicum spp): etiology and management strategies.
Crop Prot. 90:132-141.
Bhutia, D. D., Zhimo, Y., Kole, R. and Saha, J. 2016. Antifungal activity of plant extracts against
Colletotrichum musae, the post harvest anthracnose pathogen of banana cv. Martaman.
Nutr. Food Sci. 46:2-15.
Cannon, P. F., Damm, U., Johnston, P. R. and Weir, B. S. 2012.
Colletotrichum: current status and future directions.
Stud. Mycol. 73:181-213.
Chang, A. L. and Doering, T. L. 2018. Maintenance of mitochondrial morphology in
Cryptococcus neoformans is critical for stress resistance and virulence.
mBio 9:e01375-18.
Chechi, A., Stahlecker, J., Dowling, M. E. and Schnabel, G. 2019. Diversity in species composition and fungicide resistance profiles in
Colletotrichum isolates from apples.
Pestic. Biochem. Physiol. 158:18-24.
Chen, S., Guo, X., Zhang, B., Nie, D., Rao, W., Zhang, D., Lü, J., Guan, X., Chen, Z. and Pan, X. 2023. Mesoporous silica nanoparticles induce intracellular peroxidation damage of
Phytophthora infestans: a new type of green fungicide for late blight control.
Environ. Sci. Technol. 57:3980-3989.
Chowdhury, M. F. N., Yusop, M. R., Ismail, S. I., Ramlee, S. I., Oladosu, Y., Hosen, M. and Miah, G. 2020. Development of anthracnose disease resistance and heat tolerance chili through conventional breeding and molecular approaches: a review.
Biocell 44:269-278.
Damm, U., Cannon, P. F., Woudenberg, J. H. C. and Crous, P. W. 2012. The
Colletotrichum acutatum species complex.
Stud. Mycol. 73:37-113.
Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology.
Mol. Plant Pathol. 13:414-430.
de Silva, D. D., Groenewald, J. Z., Crous, P. W., Ades, P. K., Nasruddin, A., Mongkolporn, O. and Taylor, P. W. J. 2019. Identification, prevalence and pathogenicity of
Colletotrichum species causing anthracnose of
Capsicum annuum in Asia.
IMA Fungus 10:8.
Fu, T., Shin, J.-H., Lee, N.-H., Lee, K. H. and Kim, K. S. 2022. Mitogen-activated protein kinase CsPMK1 is essential for pepper fruit anthracnose by
Colletotrichum scovillei.
Front. Microbiol. 13:770119.
Gao, Y., He, L., Li, X., Lin, J., Mu, W. and Liu, F. 2018. Toxicity and biochemical action of the antibiotic fungicide tetramycin on
Colletotrichum scovillei.
Pestic. Biochem. Physiol. 147:51-58.
Gessler, N. N., Aver’yanov, A. A. and Belozerskaya, T. A. 2007. Reactive oxygen species in regulation of fungal development.
Biochemistry (Mosc) 72:1091-1109.
Gurjar, M. S., Ali, S., Akhtar, M. and Singh, K. S. 2012. Efficacy of plant extracts in plant disease management.
Agric. Sci. 3:425-433.
Jayawardena, R. S., Hyde, K. D., Damm, U., Cai, L., Liu, M., Li, X. H., Zhang, W., Zhao, W. S. and Yan, J. Y. 2016. Notes on currently accepted species of
Colletotrichum.
Mycosphere 7:1192-1260.
Khalimi, K., Darmadi, A. A. K. and Suprapta, D. N. 2019. First report on the prevalence of Colletotrichum scovillei associated with anthracnose on chili pepper in Bali, Indonesia. Int. J. Agric. Biol. 22:363-368.
Li, W., Yuan, S., Sun, J., Li, Q., Jiang, W. and Cao, J. 2018. Ethyl p-coumarate exerts antifungal activity
in vitro and
in vivo against fruit
Alternaria alternata via membrane-targeted mechanism.
Int. J. Food Microbiol. 278:26-35.
Li, Y., Chang, W., Zhang, M., Li, X., Jiao, Y. and Lou, H. 2015. Diorcinol D exerts fungicidal action against
Candida albicans through cytoplasm membrane destruction and ROS accumulation.
PLoS ONE 10:e0128693.
Li, Y., Shao, X., Xu, J., Wei, Y., Xu, F. and Wang, H. 2017. Tea tree oil exhibits antifungal activity against
Botrytis cinerea by affecting mitochondria.
Food Chem. 234:62-67.
Liao, C.-Y., Chen, M.-Y., Chen, Y.-K., Wang, T.-C., Sheu, Z.-M., Kuo, K.-C., Chang, P.-F. L., Chung, K.-R. and Lee, M.-H. 2012. Characterization of three
Colletotrichum acutatum isolates from Capsicum spp.
Eur. J. Plant Pathol. 133:599-608.
Mongkolporn, O. and Taylor, P. W. J. 2018. Chili anthracnose:
Colletotrichum taxonomy and pathogenicity.
Plant Pathol. 67:1255-1263.
Olatunji, T. L. and Afolayan, A. J. 2018. The suitability of chili pepper (
Capsicum annuum L.) for alleviating human micronutrient dietary deficiencies: a review.
Food Sci. Nutr. 6:2239-2251.
Onaran, A. and Yanar, Y. 2016.
In vivo and in vitro antifungal activities of five plant extracts against various plant pathogens. Egypt. J. Biol. Pest Control 26:405-411.
Oo, M. M., Lim, G., Jang, H. A. and Oh, S.-K. 2017. Characterization and pathogenicity of new record of anthracnose on various chili varieties caused by
Colletotrichum scovillei in Korea.
Mycobiology 45:184-191.
Pan, J., Hao, X., Yao, H., Ge, K., Ma, L. and Ma, W. 2019. Matrine inhibits mycelia growth of
Botryosphaeria dothidea by affecting membrane permeability.
J. For. Res. 30:1105-1113.
Reddy, G. K. K. and Nancharaiah, Y. V. 2020. Alkylimidazolium ionic liquids as antifungal alternatives: antibiofilm activity against
Candida albicans and underlying mechanism of action.
Front. Microbiol. 11:730.
Ridzuan, R., Rafii, M. Y., Ismail, S. I., Mohammad Yusoff, M., Miah, G. and Usman, M. 2018. Breeding for anthracnose disease resistance in chili: progress and prospects.
Int. J. Mol. Sci. 19:3122.
Sales, M. D. C., Costa, H. B., Fernandes, P. M. B., Ventura, J. A. and Meira, D. D. 2016. Antifungal activity of plant extracts with potential to control plant pathogens in pineapple.
Asian Pac. J. Trop. Biomed. 6:26-31.
Seyedjavadi, S. S., Khani, S., Eslamifar, A., Ajdary, S., Goudarzi, M., Halabian, R., Akbari, R., Zare-Zardini, H., Imani Fooladi, A. A., Amani, J. and Razzaghi-Abyaneh, M. 2019. The antifungal peptide MCh-AMP1 derived from
Matricaria chamomilla inhibits
Candida albicans growth via inducing ROS generation and altering fungal cell membrane permeability.
Front. Microbiol. 10:3150.
Shao, X., Cheng, S., Wang, H., Yu, D. and Mungai, C. 2013. The possible mechanism of antifungal action of tea tree oil on
Botrytis cinerea.
J. Appl. Microbiol. 114:1642-1649.
Souza, D. P., Pimentel, R. B. Q., Santos, A. S., Albuquerque, P. M., Fernandes, A. V., Junior, S. D., Oliveira, J. T. A., Ramos, M. V., Rathinasabapathi, B. and Gonçalves, J. F. C. 2020. Fungicidal properties and insights on the mechanisms of the action of volatile oils from Amazonian Aniba trees.
Ind. Crops Prod. 143:111914.
Tian, J., Ban, X., Zeng, H., He, J., Chen, Y. and Wang, Y. 2012. The mechanism of antifungal action of essential oil from dill (
Anethum graveolens L.) on
Aspergillus flavus.
PLoS ONE 7:e30147.
Wang, B., Liu, F., Li, Q., Xu, S., Zhao, X., Xue, P. and Feng, X. 2019. Antifungal activity of zedoary turmeric oil against
Phytophthora capsici through damaging cell membrane.
Pestic. Biochem. Physiol. 159:59-67.
Xu, Y., Wei, J., Wei, Y., Han, P., Dai, K., Zou, X., Jiang, S., Xu, F., Wang, H., Sun, J. and Shao, X. 2021. Tea tree oil controls brown rot in peaches by damaging the cell membrane of
Monilinia fructicola.
Postharvest Biol. Technol. 175:11474.
Yan, Y.-F., Yang, C.-J., Shang, X.-F., Zhao, Z.-M., Liu, Y.-Q., Zhou, R., Liu, H., Wu, T.-L., Zhao, W.-B., Wang, Y.-L., Hu, G.-F., Qin, F., He, Y.-H., Li, H.-X. and Du, S.-S. 2020. Bioassay-guided isolation of two antifungal compounds from
Magnolia officinalis, and the mechanism of action of honokiol.
Pestic. Biochem. Physiol. 170:104705.
Yang, Q., Wang, J., Zhang, P., Xie, S., Yuan, X., Hou, X., Yan, N., Fang, Y. and Du, Y. 2020.
In vitro and
in vivo antifungal activity and preliminary mechanism of cembratrien-diols against
Botrytis cinerea.
Ind. Crops Prod. 154:112745.