Anes, J., McCusker, M. P., Fanning, S. and Martins, M. 2015. The ins and outs of RND efflux pumps in
Escherichia coli.
Front. Microbiol. 6:587.
Beabout, K., Hammerstrom, T. G., Perez, A. M., Magalhães, B. F., Prater, A. G., Clements, T. P., Arias, C. A., Saxer, G. and Shamoo, Y. 2015. The ribosomal S10 protein is a general target for decreased tigecycline susceptibility.
Antimicrob. Agents Chemother. 59:5561-5566.
Brodersen, D. E., Clemons, W. M. Jr, Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T. and Ramakrishnan, V. 2000. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit.
Cell 103:1143-1154.
Chiou, C.-S. and Jones, A. L. 1995. Molecular analysis of high-level streptomycin resistance in
Erwinia amylovora.
Phytopathology 85:324-328.
Deng, W., Li, C. and Xie, J. 2013. The underling mechanism of bacterial TetR/AcrR family transcriptional repressors.
Cell. Signal. 25:1608-1613.
Entenza, J. M., Giddey, M., Vouillamoz, J. and Moreillon, P. 2010.
In vitro prevention of the emergence of daptomycin resistance in
Staphylococcus aureus and enterococci following combination with amoxicillin/clavulanic acid or ampicillin.
Int. J. Antimicrob. Agents 35:451-456.
Escursell, M. M., Roschi, A., Smits, T. H. M. and Rezzonico, F. 2021. Characterization and direct molecular discrimination of
rpsL mutations leading to high streptomycin resistance in
Erwinia amylovora.
J. Plant Pathol. 103:99-108.
Förster, H., McGhee, G. C., Sundin, G. W. and Adaskaveg, J. E. 2015. Characterization of streptomycin resistance in isolates of
Erwinia amylovora in California.
Phytopathology 105:1302-1310.
Grossman, T. H. 2016. Tetracycline antibiotics and resistance.
Cold Spring Harb. Perspect. Med. 6:a025387.
Gu, R., Li, M., Su, C. C., Long, F., Routh, M. D., Yang, F., McDermott, G. and Yu, E. W. 2008. Conformational change of the AcrR regulator reveals a possible mechanism of induction.
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64:584-588.
Ham, H., Oh, G.-R., Lee, B. W., Lee, Y. H. and Lee, Y. H. 2023. Assessment of oxytetracycline and oxolinic acid resistance of
Erwinia amylovora isolated from 2019 to 2022 in Korea.
Korean J. Pestic. Sci. 27:283-292 (in Korean).
Ham, H., Oh, G.-R., Lee, B. W., Lee, Y. H. and Lee, Y. H. 2024. Changes of sensitivity to streptomycin in
Erwinia amylovora isolated from 2019 to 2023 in Korea.
Res. Plant Dis. 30:199-205 (in Korean).
Ham, H., Oh, G.-R., Park, D. S. and Lee, Y. H. 2022. Survey of oxolinic acid-resistant
Erwinia amylovora in Korean apple and pear orchards, and the fitness impact of constructed mutants.
Plant Pathol. J. 38:482-489.
Herbert, A., Hancock, C. N., Cox, B., Schnabel, G., Moreno, D., Cavelho, R., Jones, J., Paret, M., Geng, X. and Wang, H. 2022. Oxytetracycline and streptomycin resistance genes in
Xanthomonas arboricola pv.
pruni, the causal agent of bacterial spot in peach.
Front. Microbiol. 13:821808.
Hirata, T., Saito, A., Nishino, K., Tamura, N. and Yamaguchi, A. 2004. Effects of efflux transporter genes on susceptibility of
Escherichia coli to tigecycline (GAR-936).
Antimicrob. Agents Chemother. 48:2179-2184.
Izghirean, N., Waidacher, C., Kittinger, C., Chyba, M., Koraimann, G., Pertschy, B. and Zarfel, G. 2021. Effects of ribosomal protein S10 flexible loop mutations on tetracycline and tigecycline susceptibility of
Escherichia coli.
Front. Microbiol. 12:663835.
Kleitman, F., Shtienberg, D., Blachinsky, D., Oppenheim, D., Zilberstaine, M., Dror, O. and Manulis, S. 2005.
Erwinia amylovora populations resistant to oxolinic acid in Israel: prevalence, persistence and fitness.
Plant Pathol. 54:108-115.
Krajewska, J., Tyski, S. and Laudy, A. E. 2023. Mutant prevention concentration, frequency of spontaneous mutant selection, and mutant selection window—a new approach to the
in vitro determination of the antimicrobial potency of compounds.
Antimicrob. Agents Chemother. 67:e0137322.
Lee, M. S., Lee, I., Kim, S. K., Oh, C.-S. and Park, D. H. 2018.
In vitro screening of antibacterial agents for suppression of fire blight disease in Korea.
Res. Plant Dis. 24:41-51 (in Korean).
Maeda, Y., Kiba, A., Ohnishi, K. and Hikichi, Y. 2004. Implications of amino acid substitutions in GyrA at position 83 in terms of oxolinic acid resistance in field isolates of
Burkholderia glumae, a causal agent of bacterial seedling rot and grain rot of rice.
Appl. Environ. Microbiol. 70:5613-5620.
Maeda, Y., Kiba, A., Ohnishi, K. and Hikichi, Y. 2007. Amino acid substitutions in
gyrA of
Burkholderia glumae are implicated in not only oxolinic acid resistance but also fitness on rice plants.
Appl. Environ. Microbiol. 73:1114-1119.
Manulis, S., Kleitman, F., Dror, O. and Shabi, E. 2000. Isolation of strains of Erwinia amylovora resistant to oxolinic acid. IOBC WPRS Bull. 23:89-92.
Manulis, S., Kleitman, F., Shtienberg, D., Shwartz, H., Oppenheim, D., Zilberstaine, M. and Shabi, E. 2003. Changes in the sensitivity of
Erwinia amylovora populations to streptomycin and oxolinic acid in Israel.
Plant Dis. 87:650-654.
Martin, R. G. and Rosner, J. L. 2001. The AraC transcriptional activators.
Curr. Opin. Microbiol. 4:132-137.
McGhee, G. C. and Sundin, G. W. 2011. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in
Erwinia amylovora.
Phytopathology 101:192-204.
McManus, P. S. and Jones, A. L. 1994. Epidemiology and genetic analysis of streptomycin-resistant
Erwinia amylovora from Michigan and evaluation of oxytetracycline for control.
Phytopathology 84:627-633.
McManus, P. S., Stockwell, V. O., Sundin, G. W. and Jones, A. L. 2002. Antibiotic use in plant agriculture.
Annu. Rev. Phytopathol. 40:443-465.
Miller, T. D. and Schroth, M. N. 1972. Monitoring the epiphytic populations of
Erwinia amylovora on pear with a selective medium.
Phytopathology 62:1175-1182.
Mortimer, P. G. and Piddock, L. J. 1993. The accumulation of five antibacterial agents in porin-deficient mutants of
Escherichia coli.
J. Antimicrob. Chemother. 32:195-213.
Mouton, J. W., Muller, A. E., Canton, R., Giske, C. G., Kahlmeter, G. and Turnidge, J. 2017. MIC-based dose adjustment: facts and fables.
J. Antimicrob. Chemother. 73:564-568.
Stockwell, V. O. and Duffy, B. 2012. Use of antibiotics in plant agriculture.
Rev. Sci. Tech. 31:199-210.
Sundin, G. W., Peng, J., Brown, L. E., Zeng, Q., Förster, H. and Adaskaveg, J. E. 2023. A novel IncX plasmid mediates high-level oxytetracycline and streptomycin resistance in
Erwinia amylovora from commercial pear orchards in California.
Phytopathology 113:2165-2173.
Sundin, G. W. and Wang, N. 2018. Antibiotic resistance in plant-pathogenic bacteria.
Annu. Rev. Phytopathol. 56:161-180.
Wang, G., Inaoka, T., Okamoto, S. and Ochi, K. 2009. A novel insertion mutation in
Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction.
Antimicrob. Agents Chemother. 53:1019-1026.
Wiegand, I., Hilpert, K. and Hancock, R. E. W. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances.
Nat. Protoc. 3:163-175.
Yoshida, H., Bogaki, M., Nakamura, M. and Nakamura, S. 1990. Quinolone resistance-determining region in the DNA gyrase
gyrA gene of
Escherichia coli.
Antimicrob. Agents Chemother. 34:1271-1272.