Adpressa, D. A., Connolly, L. R., Konkel, Z. M., Neuhaus, G. F., Chang, X. L., Pierce, B. R., Smith, K. M., Freitag, M. and Loesgen, S. 2019. A metabolomics-guided approach to discover
Fusarium graminearum metabolites after removal of a repressive histone modification.
Fungal Genet. Biol. 132:103256.
Ahn, S., Kim, M., Lim, J. Y., Choi, G. J. and Seo, J.-A. 2022. Characterization of
Fusarium asiaticum and
F. graminearum isolates from gramineous weeds in the proximity of rice fields in Korea.
Plant Pathol. 71:1164-1173.
Alexander, N. J., McCormick, S. P., Waalwijk, C., van der Lee, T. and Proctor, R. H. 2011. The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in
Fusarium.
Fungal Genet. Biol. 48:485-495.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool.
J. Mol. Biol. 215:403-410.
Aoki, T., Ward, T. J., Kistler, H. C. and O’Donnell, K. 2012. Systematics, phylogeny and trichothecene mycotoxin potential of Fusarium head blight cereal pathogens.
Mycotoxins 62:91-102.
Armenteros, J. J. A., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., von Heijne, G. and Nielsen, H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 34:420-423.
Blin, K., Shaw, S., Kloosterman, A. M., Charlop-Powers, Z., van Wezel, G. P., Medema, M. H. and Weber, T. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities.
Nucleic Acids Res. 49:W29-W35.
Boutigny, A.-L., Richard-Forget, F. and Barreau, C. 2008. Natural mechanisms for cereal resistance to the accumulation of
Fusarium trichothecenes.
Eur. J. Plant Pathol. 121:411-423.
Brown, D. W., Dyer, R. B., McCormick, S. P., Kendra, D. F. and Plattner, R. D. 2004. Functional demarcation of the
Fusarium core trichothecene gene cluster.
Fungal Genet. Biol. 41:454-462.
Buchfink, B., Xie, C. and Huson, D. H. 2015. Fast and sensitive protein alignment using DIAMOND.
Nat. Methods 12:59-60.
Cerón-Bustamante, M., Ward, T. J., Kelly, A., Vaughan, M. M., McCormick, S. P., Cowger, C., Leyva-Mir, S. G., Villaseñor-Mir, H. E., Ayala-Escobar, V. and Nava-Díaz, C. 2018. Regional differences in the composition of Fusarium head blight pathogens and mycotoxins associated with wheat in Mexico.
Int. J. Food Microbiol. 273:11-19.
Chiotta, M. L., Alaniz Zanon, M. S., Palazzini, J. M., Alberione, E., Barros, G. G. and Chulze, S. N. 2021.
Fusarium graminearum species complex occurrence on soybean and
F. graminearum sensu stricto inoculum maintenance on residues in soybean-wheat rotation under field conditions.
J. Appl. Microbiol. 130:208-216.
Choi, Y., Mageswari, A., Choi, H., Lee, J., Lee, D. and Hong, S.-B. 2023. Re-identification of
Fusarium sambucinum species complex strains in Korea and their literature review.
Res. Plant Dis. 29:118-129.
Dong, F., Xu, J., Zhang, X., Wang, S., Xing, Y., Mokoena, M. P., Olaniran, A. O. and Shi, J. 2020. Gramineous weeds near paddy fields are alternative hosts for the
Fusarium graminearum species complex that causes fusarium head blight in rice.
Plant Pathol. 69:433-441.
El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., Qureshi, M., Richardson, L. J., Salazar, G. A., Smart, A., Sonnhammer, E. L. L., Hirsh, L., Paladin, L., Piovesan, D., Tosatto, S. C. E. and Finn, R. D. 2019. The Pfam protein families database in 2019.
Nucleic Acids Res. 47:D427-D432.
Fang, X., Dong, F., Wang, S., Wang, G., Wu, D., Lee, Y.-W., Mohamed, S. R., Goda, AA-K, Xu, J., Shi, J. and Liu, X. 2022. The FaFlbA mutant of
Fusarium asiaticum is significantly increased in nivalenol production.
J. Appl. Microbiol. 132:3028-3037.
Fernández-Ortuño, D., Waalwijk, C., van der Lee, T., Fan, J., Atkins, S., West, J. S. and Fraaije, B. A. 2013. Simultaneous real-time PCR detection of
Fusarium asiaticum,
F. ussurianum and
F. vorosii, representing the Asian clade of the
F. graminearum species complex.
Int. J. Food Microbiol. 166:148-154.
Ferrés, I. and Iraola, G. 2018. Phylen: automatic phylogenetic reconstruction using the EggNOG database.
J. Open Source Softw. 3:593.
Frith, M. C. 2011. A new repeat-masking method enables specific detection of homologous sequences.
Nucleic Acids Res. 39:e23.
Gil-Serna, J., Vázquez, C. and Patiño, B. 2020. Genetic regulation of aflatoxin, ochratoxin A, trichothecene, and fumonisin biosynthesis: a review.
Int. Microbiol. 23:89-96.
Gomes, L. B., Ward, T. J., Badiale-Furlong, E. and Del Ponte, E. M. 2014. Species composition, toxigenic potential and pathogenicity of Fusarium graminearum species complex isolates from southern Brazilian rice. Plant Pathol. 64:980-987.
Goswami, R. S. and Kistler, H. C. 2005. Pathogenicity and
in planta mycotoxin accumulation among members of the
Fusarium graminearum species complex on wheat and rice.
Phytopathology 95:1397-1404.
Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen, J. E., Orvis, J., White, O., Buell, C. R. and Wortman, J. R. 2008. Automated eukaryotic gene structure annotation using EvidenceModeler and the Program to Assemble Spliced Alignments.
Genome Biol. 9:R7.
Hansen, F. T., Gardiner, D. M., Lysøe, E., Fuertes, P. R., Tudzynski, B., Wiemann, P., Sondergaard, T. E., Giese, H., Brodersen, D. E. and Sørensen, J. L. 2015. An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in
Fusarium.
Fungal Genet. Biol. 75:20-29.
Ibáñez-Vea, M., Lizarraga, E. and González-Peñas, E. 2011. Simultaneous determination of type-A and type-B trichothecenes in barley samples by GC-MS.
Food Control 22:1428-1434.
Jang, J. Y., Baek, S. G., Choi, J.-H., Kim, S., Kim, J., Kim, D.-W., Yun, S.-H. and Lee, T. 2019. Characterization of nivalenol-producing
Fusarium asiaticum that causes cereal head blight in Korea.
Plant Pathol. J. 35:543-552.
Jeger, M. J. and Viljanen-Rollinson, S. L. H. 2001. The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars.
Theor. Appl. Genet. 102:32-40.
Jennings, P., Coates, M. E., Walsh, K., Turner, J. A. and Nicholson, P. 2004. Determination of deoxynivalenol- and nivalenol-producing chemotypes of
Fusarium graminearum isolated from wheat crops in England and Wales.
Plant Pathol. 53:643-652.
Jeong, E., Lim, J. Y., Proctor, R. H., Lee, Y.-W., Xu, J., Shi, J., Liu, X. and Seo, J.-A. 2023. Genome sequence resource of the head blight pathogens
Fusarium asiaticum and
F. graminearum isolated from cereal crops and gramineous weeds in Korea and China.
PhytoFrontiers 3:911-915.
Karugia, G. W., Suga, H., Gale, L. R., Nakajima, T., Ueda, A. and Hyakumachi, M. 2009. Population structure of
Fusarium asiaticum from two Japanese regions and eastern China.
J. Gen. Plant Pathol. 75:110-118.
Kimura, M., Tokai, T., Takahashi-Ando, N., Ohsato, S. and Fujimura, M. 2007. Molecular and genetic studies of
Fusarium trichothecene biosynthesis: pathways, genes, and evolution.
Biosci. Biotechnol. Biochem. 71:2105-2123.
Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H. and Phillippy, A. M. 2017. Canu: scalable and accurate long-read assembly via adaptive
k-mer weighting and repeat separation.
Genome Res. 27:722-736.
Kulik, T., Ostrowska, A., Buśko, M., Pasquali, M., Beyer, M., Stenglein, S., Załuski, D., Sawicki, J., Treder, K. and Perkowski, J. 2015. Development of an FgMito assay: a highly sensitive mitochondrial based qPCR assay for quantification of
Fusarium graminearum sensu stricto.
Int. J. Food Microbiol. 210:16-23.
Kuraku, S., Zmasek, C. M., Nishimura, O. and Katoh, K. 2013. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity.
Nucleic Acids Res. 41:W22-W28.
Laraba, I., McCormick, S. P., Vaughan, M. M., Geiser, D. M. and O’Donnell, K. 2021. Phylogenetic diversity, trichothecene potential, and pathogenicity within
Fusarium sambucinum species complex.
PLoS ONE 16:e0245037.
Lee, I., Kim, Y. O., Park, S.-C. and Chun, J. 2016a. OrthoANI: an improved algorithm and software for calculating average nucleotide identity.
Int. J. Syst. Evol. Microbiol. 66:1100-1103.
Lee, T., Han, Y.-K., Kim, K.-H., Yun, S.-H. and Lee, Y.-W. 2002.
Tri13 and
Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of
Gibberella zeae.
Appl. Environ. Microbiol. 68:2148-2154.
Lee, T., Lee, S.-H., Shin, J. Y., Kim, H.-K., Yun, S.-H., Kim, H.-Y., Lee, S. and Ryu, J.-G. 2014. Comparison of trichothecene biosynthetic gene expression between
Fusarium graminearum and
Fusarium asiaticum.
Plant Pathol. J. 30:33-42.
Lee, T., Paek, J.-S., Lee, K. A., Lee, S., Choi, J.-H., Ham, H., Hong, S. K. and Ryu, J.-G. 2016b. Occurrence of toxigenic
Fusarium vorosii among small grain cereals in Korea.
Plant Pathol. J. 32:407-413.
Leplat, J., Friberg, H., Abid, M. and Steinberg, C. 2012. Survival of
Fusarium graminearum, the causal agent of Fusarium head blight: a review.
Agron. Sustain. Dev. 33:97-111.
Lowe, T. M. and Eddy, S. R. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence.
Nucleic Acids Res. 25:955-964.
Lu, Y., Qiu, J., Wang, S., Xu, J., Ma, G., Shi, J. and Bao, Z. 2021. Species diversity and toxigenic potential of
Fusarium incarnatum-equiseti species complex isolates from rice and soybean in China.
Plant Dis. 105:2628-2636.
Macheleidt, J., Mattern, D. J., Fischer, J., Netzker, T., Weber, J., Schroeckh, V., Valiante, V. and Brakhage, A. A. 2016. Regulation and role of fungal secondary metabolites.
Annu. Rev. Genet. 50:371-392.
Maeda, K., Tanaka, Y., Matsuyama, M., Sato, M., Sadamatsu, K., Suzuki, T., Matsui, K., Nakajima, Y., Tokai, T., Kanamaru, K., Ohsato, S., Kobayashi, T., Fujimura, M., Nishiuchi, T., Takahashi-Ando, N. and Kimura, M. 2020. Substrate specificities of
Fusarium biosynthetic enzymes explain the genetic basis of a mixed chemotype producing both deoxynivalenol and nivalenol-type trichothecenes.
Int. J. Food Microbiol. 320:108532.
Majoros, W. H., Pertea, M. and Salzberg, S. L. 2004. TigrScan and GlimmerHMM: two open source
ab initio eukaryotic gene-finders.
Bioinformatics 20:2878-2879.
Martínez, M., Dinolfo, M. I., Nogueira, S. and Stenglein, S. A. 2021.
Fusarium tricinctum associated with head blight on barley in Argentina: pathogenicity and potential degradation of the different hordein fractions.
J. Plant Dis. Prot. 128:1377-1381.
McCormick, S. P., Stanley, A. M., Stover, N. A. and Alexander, N. J. 2011. Trichothecenes: from simple to complex mycotoxins.
Toxins 3:802-814.
Mielniczuk, E. and Skwaryło-Bednarz, B. 2020. Fusarium head blight, mycotoxins and strategies for their reduction.
Agronomy 10:509.
Mitchell, A. L., Attwood, T. K., Babbitt, P. C., Blum, M., Bork, P., Bridge, A., Brown, S. D., Chang, H.-Y., El-Gebali, S., Fraser, M. I., Gough, J., Haft, D. R., Huang, H., Letunic, I., Lopez, R., Luciani, A., Madeira, F., Marchler-Bauer, A., Mi, H., Natale, D. A., Necci, M., Nuka, G., Orengo, C., Pandurangan, A. P., Paysan-Lafosse, T., Pesseat, S., Potter, S. C., Qureshi, M. A., Rawlings, N. D., Redaschi, N., Richardson, L. J., Rivoire, C., Salazar, G. A., Sangrador-Vegas, A., Sigrist, C. J. A., Sillitoe, I., Sutton, G. G., Thanki, N., Thomas, P. D., Tosatto, S. C. E., Yong, S.-Y. and Finn, R. D. 2019. InterPro in 2019: improving coverage, classification and access to protein sequence annotations.
Nucleic Acids Res. 47:D351-D360.
Möller, M. and Stukenbrock, E. H. 2017. Evolution and genome architecture in fungal plant pathogens.
Nat. Rev. Microbiol. 15:756-771.
Molnár, O., Vida, G. and Puskás, K. 2024.
Fusarium species associate with Fusarium head blight in Hungarian wheat fields.
Plant Dis. 108:558-562.
Moonjely, S., Ebert, M., Paton-Glassbrook, D., Noel, Z. A., Roze, L., Shay, R., Watkins, T. and Trail, F. 2023. Update on the state of research to manage
Fusarium head blight.
Fungal Genet. Biol. 169:103829.
Nicholson, R. L. and Epstein, L. 2013. Adhesion of fungi to the plant surface. In:
The fungal spore and disease initiation in plants and animals, eds. by G. T. Cole and H. C. Hoch, pp. 3-23. Springer, New York, USA.
Nurk, S., Walenz, B. P., Rhie, A., Vollger, M. R., Logsdon, G. A., Grothe, R., Miga, K. H., Eichler, E. E., Phillippy, A. M. and Koren, S. 2020. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads.
Genome Res. 30:1291-1305.
Obradović, A., Stepanović, J., Krnjaja, V., Bulajić, A., Stanković, G., Stevanović, M. and Stanković, S. 2022. First report of head blight of wheat caused by
Fusarium vorosii in Serbia.
Plant Dis. 106:758.
O’Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies.
Proc. Natl. Acad. Sci. U. S. A. 95:2044-2049.
Osborne, L. E. and Stein, J. M. 2007. Epidemiology of Fusarium head blight on small-grain cereals.
Int. J. Food Microbiol. 119:103-108.
Pasquali, M., Beyer, M., Bohn, T. and Hoffmann, L. 2011. Comparative analysis of genetic chemotyping methods for
Fusarium: Tri13 polymorphism does not discriminate between 3- and 15-acetylated deoxynivalenol chemotypes in
Fusarium graminearum.
J. Phytopathol. 159:700-704.
Proctor, R. H., Hao, G., Kim, H.-S., Whitaker, B. K., Laraba, I., Vaughan, M. M. and McCormick, S. P. 2022. A novel trichothecene toxin phenotype associated with horizontal gene transfer and a change in gene function in
Fusarium.
Toxins 15:12.
Przemieniecki, S. W., Kurowski, T. P. and Korzekwa, K. 2014. Chemotypes and geographic distribution of the
Fusarium graminearum species complex.
Environ. Biotechnol. 10:45-59.
Qiu, J., Xu, J. and Shi, J. 2014. Molecular characterization of the
Fusarium graminearum species complex in Eastern China.
Eur. J. Plant Pathol. 139:811-823.
Rawlings, N. D., Barrett, A. J., Thomas, P. D., Huang, X., Bateman, A. and Finn, R. D. 2018. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database.
Nucleic Acids Res. 46:D624-D632.
Rep, M. and Kistler, H. C. 2010. The genomic organization of plant pathogenicity
Fusarium species.
Curr. Opin. Plant Biol. 13:420-426.
Ryu, J.-G., Lee, S., Son, S.-W., Lee, S.-W., Nam, Y. J., Kim, M., Lee, T. and Yun, J.-C. 2011. Natural occurrence of Fusarium head blight and its mycotoxins in 2010-harvested Barley and wheat grains in Korea.
Res. Plant Dis. 17:272-279.
Sarver, B. A. J., Ward, T. J., Gale, L. R., Broz, K., Kistler, H. C., Aoki, T., Nicholson, P., Carter, J. and O’Donnell, K. 2011. Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance.
Fungal Genet. Biol. 48:1096-1107.
Shin, S., Song, J.-H., Park, J.-C., Kim, K.-H., Yoon, Y.-M., Cheong, Y.-K., Kim, K.-H., Hyun, J.-N., Park, C. S., Dill-Macky, R. and Kang, C.-S. 2018. Comparative pathogenicity of
Fusarium graminearum isolates from wheat kernels in Korea.
Plant Pathol. J. 34:347-355.
Sieber, C. M. K., Lee, W., Wong, P., Münsterkötter, M., Mewes, H.-W., Schmeitzl, C., Varga, E., Berthiller, F., Adam, G. and Güldener, U. 2014. The
Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer.
PLoS ONE 9:e110311.
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. and Zdobnov, E. M. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs.
Bioinformatics 31:3210-3212.
Slater, G. S. C. and Birney, E. 2005. Automated generation of heuristics for biological sequence comparsion.
BMC Bioinformatics 6:31.
Stanke, M. and Waack, S. 2003. Gene prediction with a hidden Markov model and a new intron submodel.
Bioinformatics 19:ii215-ii225.
Starkey, D. E., Ward, T. J., Aoki, T., Gale, L. R., Kistler, H. C., Geiser, D. M., Suga, H., Tóth, B., Varga, J. and O’Donnell, K. 2007. Global molecular surveillance reveals novel
Fusarium head blight species and trichothecene toxin diversity.
Fungal Genet. Biol. 44:1191-1204.
Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y. O. and Borodovsky, M. 2008. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training.
Genome Res. 18:1979-1990.
Terrapon, N., Lombard, V., Drula, E., Coutinho, P. M. and Henrissat, B. 2017. The CAZy database/the carbohydrate-active enzyme (CAZy) database: principles and usage guidelines. In:
A practical guide to using glycomics databases, eds. by K. F. Aoki-Kinoshita, pp. 117-131. Springer, Tokyo, Japan.
Tralamazza, S. M., Rocha, L. O., Oggenfuss, U., Corrêa, B. and Croll, D. 2019. Complex evolutionary origins of specialized metabolite gene cluster diversity among the plant pathogenic fungi of the
Fusarium graminearum species complex.
Genome Biol. Evol. 11:3106-3122.
Urban, M., Irvine, A. G., Cuzick, A. and Hammond-Kosack, K. E. 2015. Using the pathogen-host interactions database (PHI-base) to investigate plat pathogen genomes and genes implicated in virulence.
Front. Plant Sci. 6:605.
Valverde-Bogantes, E., Bianchini, A., Herr, J. R., Rose, D. J., Wegulo, S. N. and Hallen-Adams, H. E. 2020. Recent population changes of Fusarium head blight pathogens: drivers and implications.
Can. J. Plant Pathol. 42:315-329.
van der Lee, T., Zhang, H., van Diepeningen, A. and Waalwijk, C. 2015. Biogeography of
Fusarium graminearum species complex and chemotypes: a review.
Food Addit. Contam. Part A. 32:453-460.
Villafana, R. T., Ramdass, A. C. and Rampersad, S. N. 2019. Selection of
Fusarium trichothecene toxin genes for molecular detection depends on TRI gene cluster organization and gene function.
Toxins 11:36.
Ward, T. J., Bielawski, J. P., Kistler, H. C., Sullivan, E. and O’Donnell, K. 2002. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic
Fusarium.
Proc. Natl. Acad. Sci. U. S. A. 99:9278-9283.
Weber, T., Blin, K., Duddela, S., Krug, D., Kim, H. U., Bruccoleri, R., Lee, S. Y., Fischbach, M. A., Müller, R., Wohlleben, W., Breitling, R., Takano, E. and Medsema, M. H. 2015. antiSMASH 3.0: a comprehensive resource for the genome mining of biosynthetic gene clusters.
Nucleic Acids Res. 43:W237-W243.
Westphal, K. R., Bachleitner, S., Severinsen, M. M., Brundtø, M. L., Hansen, F. T., Sørensen, T., Wellenberg, R. D., Lysøe, E., Studt, L., Sørensen, J. L., Sondergaard, T. E. and Wimmer, R. 2021. Cyclic, hydrophobic hexapeptide fusahexin is the product of a nonribosomal peptide synthetase in
Fusarium graminearum.
J. Nat. Prod. 84:2070-2080.
Wu, L., Zhang, H., Hu, X., Zhang, Y., Sun, L., Li, W. and Wang, B. 2020. Deacetylation of 3-acetyl-deoxynivalenol in wheat flour is mediated by water-soluble proteins during the making of Chinese steamed bread.
Food Chem. 303:125341.
Xu, F., Liu, W., Song, Y., Zhou, Y., Xu, X., Yang, G., Wang, J., Zhang, J. and Liu, L. 2021. The distribution of
Fusarium graminearum and
Fusarium asiaticum causing Fusarium head blight of wheat in relation to climate and cropping system.
Plant Dis. 105:2830-2835.
Yli-Mattila, T., Gagkaeva, T., Ward, T. J., Aoki, T., Kistler, H. C. and O’Donnell, K. 2009. A novel Asian clade within the
Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East.
Mycologia 101:841-852.
Yörük, E. and Albayrak, G. 2012. Chemotyping of
Fusarium graminearum and
F. culmorum isolates from Turkey by PCR Assay.
Mycopathologia 173:53-61.
Zhu, Z., Hao, Y., Mergoum, M., Bai, G., Humphreys, G., Cloutier, S., Xia, X. and He, Z. 2019. Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada.
Crop. J. 7:730-738.
Zingales, V., Fernández-Franzón, M. and Ruiz, M.-J. 2021. Occurrence, mitigation and
in vitro cytotoxicity of nivalenol, a type B trichothecene mycotoxin: updates from the last decade (2010-2020).
Food Chem. Toxicol. 152:112182.