Ashwini, N. and Srividya, S. 2014. Potentiality of
Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by
Colletotrichum gloeosporioides OGC1.
3Biotech 4:127-136.
Cannon, P. F., Damm, U., Johnston, P. R. and Weir, B. S. 2012.
Colletotrichum: current status and future directions.
Stud. Mycol. 73:181-213.
Cao, Y., Pi, H., Chandrangsu, P., Li, Y., Wang, Y., Zhou, H., Xiong, H., Helmann, J. D. and Cai, Y. 2018. Antagonism of two plant-growth promoting
Bacillus velezensis isolates against
Ralstonia solanacearum and
Fusarium oxysporum.
Sci. Rep. 8:4360.
Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C. and Mahillon, J. 2019. Overview of the antimicrobial compounds produced by members of the
Bacillus subtilis group.
Front. Microbiol. 10:302.
Chechi, A., Stahlecker, J., Dowling, M. E. and Schnabel, G. 2019. Diversity in species composition and fungicide resistance profiles in
Colletotrichum isolates from apples.
Pestic. Biochem. Physiol. 158:18-24.
Chen, Y., Fu, D., Wang, W., Gleason, M. L., Zhang, R., Liang, X. and Sun, G. 2022. Diversity of
Colletotrichum species causing apple bitter rot and Glomerella leaf spot in China.
J. Fungi 8:740.
Chen, Z., Zhao, L., Chen, W., Dong, Y., Yang, C., Li, C., Xu, H., Gao, X., Chen, R., Li, L. and Xu, Z. 2020. Isolation and evaluation of
Bacillus velezensis ZW-10 as a potential biological control agent against
Magnaporthe oryzae.
Biotechnol. Biotechnol. Equip. 34:714-724.
Cheon, W. and Jeon, Y. 2015. Survey of major diseases occurred on apple in northern Gyeongbuk from 2013 to 2014.
Res. Plant Dis. 21:261-267 (in Korean).
Chowdhury, S. P., Hartmann, A., Gao, X. and Borriss, R. 2015. Biocontrol mechanism by root-associated
Bacillus amyloliquefaciens FZB42: a review.
Front. Microbiol. 6:780.
Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology.
Mol. Plant Pathol. 13:414-430.
Ding, H., Mo, W., Yu, S., Cheng, H., Peng, L. and Liu, Z. 2021. Whole genome sequence of
Bacillus velezensis strain GUMT319: a potential biocontrol agent against tobacco black shank disease.
Front. Microbiol. 12:658113.
Ehteshamul-Haque, S. and Ghaffar, A. 1993. Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mungbean.
J. Phytopathol. 138:157-163.
Enserink, M., Hines, P. J., Vignieri, S. N., Wigginton, N. S. and Yeston, J. S. 2013. Smarter pest control: the pesticide paradox.
Science 341:728-729.
Fan, B., Wang, C., Song, X., Ding, X., Wu, L., Wu, H., Gao, X. and Borriss, R. 2018.
Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol.
Front. Microbiol. 9:2491.
Fan, H., Ru, J., Zhang, Y., Wang, Q. and Li, Y. 2017. Fengycin produced by
Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease.
Microbiol. Res. 199:89-97.
Fang, C., Xu, Y. and Ji, Y. 2022. Part-time farming, diseases and pest control delay and its external influence on pesticide use in China’s rice production.
Front. Environ. Sci. 10:896385.
Gao, Z., Zhang, B., Liu, H., Han, J. and Zhang, Y. 2017. Identification of endophytic
Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against
Alternaria solani and
Botrytis cinerea.
Biol. Control 105:27-39.
Ghazala, I., Chiab, N., Saidi, M. N. and Gargouri-Bouzid, R. 2022. Volatile organic compounds from
Bacillus mojavensis I4 promote plant growth and inhibit phytopathogens.
Physiol. Mol. Plant Pathol. 121:101887.
Goswami, M. and Deka, S. 2019. Biosurfactant production by a rhizosphere bacteria
Bacillus altitudinis MS16 and its promising emulsification and antifungal activity.
Colloids Surf. B Biointerfaces 178:285-296.
Grady, E. N., MacDonald, J., Ho, M. T., Weselowski, B., McDowell, T., Solomon, O., Renaud, J. and Yuan, Z.-C. 2019. Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium
Bacillus velezensis 9D-6.
BMC Microbiol. 19:5.
Guo, Z., Luo, C.-X., Wu, H.-J., Peng, B., Kang, B.-S., Liu, L.-M., Zhang, M. and Gu, Q.-S. 2022.
Colletotrichum species associated with anthracnose disease of watermelon (
Citrullus lanatus) in China.
J. Fungi 8:790.
Han, J.-H., Shim, H., Shin, J.-H. and Kim, K. S. 2015. Antagonistic activities of
Bacillus spp. strains isolated from tidal flat sediment towards anthracnose pathogens
Colletotrichum acutatum and
C. gloeosporioides in South Korea.
Plant Pathol. J. 31:165-175.
Heo, Y., Lee, Y., Balaraju, K. and Jeon, Y. 2024. Characterization and evaluation of
Bacillus subtilis GYUN-2311 as a biocontrol agent against
Colletotrichum spp. on apple and hot pepper in Korea.
Front. Microbiol. 14:1322641.
Hyde, K. D., Cai, L., Cannon, P. F., Crouch, J. A., Crous, P. W., Damm, U., Goodwin, P. H., Chen, H., Johnston, P. R., Jones, E. B. G., Liu, Z. Y., McKenzie, E. H. C., Moriwaki, J., Noireung, P., Pennycook, S. R., Pfenning, L. H., Prihastuti, H., Sato, T., Shivas, R. G., Tan, Y. P., Taylor, P. W. J., Weir, B. S., Yang, Y. L. and Zhang, J. Z. 2009. Colletotrichum: names in current use. Fungal Divers. 39:147-182.
Jayasinghe, C. K. and Fernando, T. H. P. S. 2009. First report of Colletotrichum acutatum on Mangifera indica in Sri Lanka. Ceylon J. Sci. 38:31-34.
Jeong, M.-H., Lee, Y.-S., Cho, J.-Y., Ahn, Y.-S., Moon, J.-H., Hyun, H.-N., Cha, G.-S. and Kim, K.-Y. 2017. Isolation and characterization of metabolites from
Bacillus licheniformis MH48 with antifungal activity against plant pathogens.
Microb. Pathogen. 110:645-653.
Kai, T. and Adhikari, D. 2021. Effect of organic and chemical fertilizer application on apple nutrient content and orchard soil condition.
Agriculture 11:340.
Keshmirshekan, A., de Souza Mesquita, L. M. and Ventura, S. P. M. 2024. Biocontrol manufacturing and agricultural applications of
Bacillus velezensis.
Trends Biotechnol. 42:986-1001.
Khan, N., Martínez-Hidalgo, P., Ice, T. A., Maymon, M., Humm, E. A., Nejat, N., Sanders, E. R., Kaplan, D. and Hirsch, A. M. 2018. Antifungal activity of
Bacillus species against
Fusarium and analysis of the potential mechanisms used in biocontrol.
Front. Microbiol. 9:2363.
Khodadadi, F., González, J. B., Martin, P. L., Giroux, E., Bilodeau, G. L., Peter, K. A., Doyle, V. P. and Aćimović, S. G. 2020. Identification and characterization of
Colletotrichum species causing apple bitter rot in New York and description of
C. noveboracense sp. nov.
Sci. Rep. 10:11043.
Kim, J.-A., Song, J.-S., Kim, P. I., Kim, D.-H. and Kim, Y. 2022.
Bacillus velezensis TSA32-1 as a promising agent for biocontrol of plant pathogenic fungi.
J. Fungi 8:1053.
Kim, W. G., Hong, S. K., Choi, H. W. and Lee, Y. K. 2009. Occurrence of anthracnose on highbush blueberry caused by
Colletotrichum species in Korea.
Mycobiology 37:310-312.
Kim, Y. S., Balaraju, K. and Jeon, Y. 2016. Biological control of apple anthracnose by
Paenibacillus polymyxa APEC128, an antagonistic rhizobacterium.
Plant Pathol. J. 32:251-259.
Kim, Y. S., Lee, Y., Cheon, W., Park, J., Kwon, H.-T., Balaraju, K., Kim, J., Yoon, Y. J. and Jeon, Y. 2021. Characterization of
Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by
Colletotrichum gloeosporioides.
Sci. Rep. 11:626.
Koilybayeva, M., Shynykul, Z., Ustenova, G., Abzaliyeva, S., Alimzhanova, M., Amirkhanova, A., Turgumbayeva, A., Mustafina, K., Yeleken, G., Raganina, K. and Kapsalyamova, E. 2023. Molecular characterization of some
Bacillus species from vegetables and evaluation of their antimicrobial and antibiotic potency.
Molecules 28:3210.
Kwak, Y.-K., Kim, I.-S., Cho, M.-C., Lee, S.-C. and Kim, S. 2012. Growth inhibition effect of environment-friendly farm materials in Colletotrichum acutatum in vitro. J. Bio-Environ. Control 21:127-133.
Lee, E. J., Ahn, Y.-J., Lee, H.-S. and Chung, N. 2012. Biocontrol of pepper anthracnose by a new
Streptomyces sp. A1022 under greenhouse condition.
J. Korean Soc. Appl. Biol. Chem. 55:447-449.
Lee, Y., Kim, Y. S., Balaraju, K., Seo, Y.-S., Park, J., Ryu, C.-M., Park, S.-H., Kim, J. F., Kang, S. and Jeon, Y. 2020. Molecular changes associated with spontaneous phenotypic variation of
Paenibacillus polymyxa, a commonly used biocontrol agent, and temperature-dependent control of variation.
Sci. Rep. 10:16586.
Li, N., Alfiky, A., Wang, W., Islam, M., Nourollahi, K., Liu, X. and Kang, S. 2018. Volatile compound-mediated recognition and inhibition between
Trichoderma biocontrol agents and
Fusarium oxysporum.
Front. Microbiol. 9:2614.
Liang, N., Charron, J.-B. and Jabaji, S. 2023. Comparative transcriptome analysis reveals the biocontrol mechanism of
Bacillus velezensis E68 against
Fusarium graminearum DAOMC 180378, the causal agent of Fusarium head blight.
PLoS ONE 18:e0277983.
Liu, G., Kong, Y., Fan, Y., Geng, C., Peng, D. and Sun, M. 2017. Whole-genome sequencing of
Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria.
J. Biotechnol. 249:20-24.
Liu, Y., Teng, K., Wang, T., Dong, E., Zhang, M., Tao, Y. and Zhong, Y. 2020. Antimicrobial
Bacillus velezensis HC6: production of three kinds of lipopeptides and biocontrol potential in maize.
J. Appl. Microbiol. 128:242-254.
Mao, T., Chen, X., Ding, H., Chen, X. and Jiang, X. 2020. Pepper growth promotion and Fusarium wilt biocontrol by
Trichoderma hamatum MHT1134.
Biocontrol Sci. Technol. 30:1228-1243.
Nodet, P., Chalopin, M., Crété, X., Baroncelli, R. and Le Floch, G. 2019. First report of
Colletotrichum fructicola causing apple bitter rot in Europe.
Plant Dis. 103:1767.
Palazzini, J. M., Dunlap, C. A., Bowman, M. J. and Chulze, S. N. 2016.
Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: genome sequencing and secondary metabolite cluster profiles.
Microbiol. Res. 192:30-36.
Pliego, C., Ramos, C., de Vicente, A. and Cazorla, F. M. 2011. Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens.
Plant Soil. 340:505-520.
Poveda, J. 2021. Beneficial effects of microbial volatile organic compounds (MVOCs) in plants.
Appl. Soil Ecol. 168:104118.
Raaijmakers, J. M., de Bruijn, I., Nybroe, O. and Ongena, M. 2010. Natural functions of lipopeptides from
Bacillus and
Pseudomonas: more than surfactants and antibiotics.
FEMS Microbiol. Rev. 34:1037-1062.
Rehman, Z. U. and Leiknes, T. 2018. Quorum-quenching bacteria isolated from red sea sediments reduce biofilm formation by
Pseudomonas aeruginosa.
Front. Microbiol. 9:1354.
Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J.-W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M. and Pérez-García, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of
Bacillus subtilis toward
Podosphaera fusca.
Mol. Plant-Microbe Interact. 20:430-440.
Salotti, I., Ji, T. and Rossi, V. 2022. Temperature requirements of
Colletotrichum spp. belonging to different clades.
Front. Plant Sci. 13:953760.
Sarwar, A., Brader, G., Corretto, E., Aleti, G., Abaidullah, M., Sessitsch, A. and Hafeez, F. Y. 2018. Qualitative analysis of biosurfactants from
Bacillus species exhibiting antifungal activity.
PLoS ONE 13:e0198107.
Sengupta, P., Sen, S., Mukherjee, K. and Acharya, K. 2020. Postharvest diseases of Indian gooseberry and their management: a review.
Int. J. Fruit Sci. 20:178-190.
Shanmugam, V. and Kanoujia, N. 2011. Biological management of vascular wilt of tomato caused by
Fusarium oxysporum f. sp. lycospersici by plant growth-promoting rhizobacterial mixture.
Biol. Control 57:85-93.
Víchová, J., Staňková, B. and Pokorný, R. 2012. First report of
Colletotrichum acutatum on tomato and apple fruits in the Czech Republic.
Plant Dis. 96:769.
Weng, J., Wang, Y., Li, J., Shen, Q. and Zhang, R. 2013. Enhanced root colonization and biocontrol activity of
Bacillus amyloliquefaciens SQR9 by abrB gene disruption.
Appl. Microbiol. Biotechnol. 97:8823-8830.
Wu, D., Fu, L., Cao, Y., Dong, N. and Li, D. 2023. Genomic insights into antimicrobial potential and optimization of fermentation conditions of pig-derived
Bacillus subtilis BS21.
Front. Microbiol. 14:1239837.
Xia, Y., Liu, J., Wang, Z., He, Y., Tan, Q., Du, Z., Niu, A., Liu, M., Li, Z., Sang, M. and Zhou, G. 2023. Antagonistic activity and potential mechanisms of endophytic
Bacillus subtilis YL13 in biocontrol of
Camellia oleifera anthracnose.
Forests 14:886.
Ye, X., Li, Z., Luo, X., Wang, W., Li, Y., Li, R., Zhang, B., Qiao, Y., Zhou, J., Fan, J., Wang, H., Huang, Y., Cao, H., Cui, Z. and Zhang, R. 2020. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community.
Microbiome 8:49.
Yan, Y., Yuan, Q., Tang, J., Huang, J., Hsiang, T., Wei, Y. and Zheng, L. 2018.
Colletotrichum higginsianum as a model for understanding host-pathogen interactions: a review.
Int. J. Mol. Sci. 19:2142.
Yuan, H., Shi, B., Wang, L., Huang, T., Zhou, Z., Hou, H. and Tu, H. 2022. Isolation and characterization of
Bacillus velezensis strain P2-1 for biocontrol of apple postharvest decay caused by
Botryosphaeria dothidea.
Front. Microbiol. 12:808938.
Zakaria, L. 2021. Diversity of
Colletotrichum species associated with anthracnose disease in tropical fruit crops: a review.
Agriculture 11:297.
Zhang, T., Shi, Z.-Q., Hu, L.-B., Cheng, L.-G. and Wang, F. 2008. Antifungal compounds from
Bacillus subtilis B-FS06 inhibiting the growth of
Aspergillus flavus.
World J. Microbiol. Biotechnol. 24:783-788.
Zhang, X. Y., Li, X. and Gao, Z. Y. 2014. Carbendazim resistance of Colletotrichum gloeosporioides on tropical and subtropical fruits. Chin. J. Trop. Agric. 34:71-74.