Andersson, D. I. and Hughes, D. 2014. Microbiological effects of sublethal levels of antibiotics.
Nat. Rev. Microbiol. 12:465-478.
Bocsanczy, A. M., Achenbach, U. C. M., Mangravita-Novo, A., Yuen, J. M. F. and Norman, D. J. 2012. Comparative effect of low temperature on virulence and twitching motility of
Ralstonia solanacearum strains present in Florida.
Phytopathology 102:185-194.
Cameron, A. and Sarojini, V. 2014.
Pseudomonas syringae pv.
actinidiae: chemical control, resistance mechanisms and possible alternatives.
Plant Pathol. 63:1-11.
Cohen, S. P. and Leach, J. E. 2020. High temperature-induced plant disease susceptibility: more than the sum of its parts.
Curr. Opin. Plant Biol. 56:235-241.
Cruz-Loya, M., Kang, T. M., Lozano, N. A., Watanabe, R., Tekin, E., Damoiseaux, R., Savage, V. M. and Yeh, P. J. 2019. Stressor interaction networks suggest antibiotic resistance co-opted from stress responses to temperature.
ISME J. 13:12-23.
Fischer-Le Saux, M., Bonneau, S., Essakhi, S., Manceau, C. and Jacques, M.-A. 2015. Aggressive emerging pathovars of
Xanthomonas arboricola represent widespread epidemic clones distinct from poorly pathogenic strains, as revealed by multilocus sequence typing.
Appl. Environ. Microbiol. 81:4651-4668.
Garita-Cambronero, J., Palacio-Bielsa, A. and Cubero, J. 2018.
Xanthomonas arboricola pv.
pruni, causal agent of bacterial spot of stone fruits and almond: its genomic and phenotypic characteristics in the
X. arboricola species context.
Mol. Plant Pathol. 19:2053-2065.
Goltermann, L., Good, L. and Bentin, T. 2013. Chaperonins fight aminoglycoside-induced protein misfolding and promote short-term tolerance in
Escherichia coli.
J. Biol. 288:10483010489.
Herbert, A., Hancock, C. N., Cox, B., Schnabel, G., Moreno, D., Carvalho, R., Jones, J., Paret, M., Geng, X. and Wang, H. 2022. Oxytetracycline and streptomycin resistance genes in
Xanthomonas arboricola pv.
pruni, the causal agent of bacterial spot in peach.
Front. Microbiol. 13:821808.
Kohanski, M. A., Dwyer, D. J., Wierzbowski, J., Cottarel, G. and Collins, J. J. 2008. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death.
Cell 135:679-690.
Lamichhane, J. R. and Varvaro, L. 2014.
Xanthomonas arboricola disease of hazelnut: current status and future perspectives for its management. Plant Pathol. 63:243-254.
Lyu, Q., Bai, K., Kan, Y., Jiang, N., Thapa, S. P., Coaker, G., Li, J. and Luo, L. 2019. Variation in streptomycin resistance mechanisms in
Clavibacter michiganensis.
Phytopathology 109:1849-1858.
McManus, P. S., Stockwell, V. O., Sundin, G. W. and Jones, A. L. 2002. Antibiotic use in plant agriculture.
Annu. Rev. Phytopathol. 40:443-465.
Miller, S. A., Ferreira, J. P. and LeJeune, J. T. 2022. Antimicrobial use and resistance in plant agriculture: a one health perspective.
Agriculture 12:289.
Mindlin, S. Z. and Petrova, M. A. 2017. On the origin and distribution of antibiotic resistance: permafrost bacteria studies.
Mol. Genet. Microbiol. Virol. 32:169-179.
Newbery, F., Qi, A. and Fitt, B. D. L. 2016. Modelling impacts of climate change on arable crop diseases: progress, challenges and applications.
Curr. Opin. Plant Biol. 32:101-109.
Oz, T., Guvenek, A., Yildiz, S., Karaboga, E., Tamer, Y. T., Mumcuyan, N., Ozan, V. B., Senturk, G. H., Cokol, M., Yeh, P. and Toprak, E. 2014. Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution.
Mol. Biol. Evol. 31:2387-2401.
Palacio-Bielsa, A., Roselló, M., Cambra, M. A. and López, M. M. 2010. First report on almond in Europe of bacterial spot disease of stone fruits caused by Xanthomonas arboricola pv. pruni. Plant Dis. 94:786.
Rodríguez-Verdugo, A., Lozano-Huntelman, N., Cruz-Loya, M., Savage, V. and Yeh, P. 2020. Compounding effects of climate warming and antibiotic resistance.
iScience 23:101024.
Roselló, M., Santiago, R., Palacio-Bielsa, A., García-Figueres, F., Montón, C., Cambra, M. A. and López, M. M. 2012. Current status of bacterial spot of stone fruits and almond caused by Xanthomonas arboricola pv. pruni in Spain. J. Plant Pathol. 94(1 Suppl):15-21.
Stefani, E. 2010. Economic significance and control of bacterial spot/canker of stone fruits caused by Xanthomonas arboricola pvpruni. J. Plant Pathol. 92(1 Suppl):99-103.
Sundin, G. W. and Wang, N. 2018. Antibiotic resistance in plant-pathogenic bacteria.
Annu. Rev. Phytopathol. 56:161-180.
Tancos, K. A. and Cox, K. D. 2017. Effects of consecutive streptomycin and kasugamycin applications on epiphytic bacteria in the apple phyllosphere.
Plant Dis. 101:158-164.
van Overbeek, L. S., Wellington, E. M. H., Egan, S., Smalla, K., Heuer, H., Collard, J.-M., Guillaume, G., Karagouni, A. D., Nikolakopoulou, T. L. and van Elsas, J. D. 2002. Prevalence of streptomycin-resistance genes in bacterial populations in European habitats.
FEMS Microbiol. Ecol. 42:277-288.
VanBogelen, R. A. and Neidhardt, F. C. 1990. Ribosomes as sensors of heat and cold shock in
Escherichia coli.
Proc. Natl. Acad. Sci. U. S. A. 87:5589-5593.
Velásquez, A. C., Castroverde, C. D. M. and He, S. Y. 2018. Plant-pathogen warfare under changing climate conditions.
Curr. Biol. 28:R619-R634.
Verhaegen, M., Bergot, T., Liebana, E., Stancanelli, G., Streissl, F., Mingeot-Leclercq, M.-P., Mahillon, J. and Bragard, C. 2023. On the use of antibiotics to control plant pathogenic bacteria: a genetic and genomic perspective.
Front. Microbiol. 14:1221478.
Wistrand-Yuen, E., Knopp, M., Hjort, K., Koskiniemi, S., Berg, O. G. and Andersson, D. I. 2018. Evolution of high-level resistance during low-level antibiotic exposure.
Nat. Commun. 9:1599.
Xing, Y., Kang, X., Zhang, S. and Men, Y. 2021. Specific phenotypic, genomic, and fitness evolutionary trajectories toward streptomycin resistance induced by pesticide co-stressors in
Escherichia coli.
ISME Commun. 1:39.
Xing, Y., Wu, S. and Men, Y. 2020. Exposure to environmental level pesticides stimulates and diversifies evolution in
Escherichia coli towards greater antibiotic resistance.
Environ. Sci. Technol. 54:8770-8778.