Ahmad, A., El Gamal, A. and Saraswat, D. 2023. Toward generalization of deep learning-based plant disease identification under controlled and field conditions.
IEEE Access 11:9042-9057.
Ali, A., Bordoh, P. K., Singh, A., Siddiqui, Y. and Droby, S. 2016. Post-harvest development of anthracnose in pepper (
Capsicum spp): etiology and management strategies.
Crop Prot. 90:132-141.
Aljawasim, B. D., Samtani, J. B. and Rahman, M. 2023. New insights in the detection and management of anthracnose diseases in strawberries.
Plants 12:3704.
Bjorck, J., Weinberger, K. Q. and Gomes, C. 2021. Understanding decoupled and early weight decay.
Proc. AAAI Conf. Artif. Intell. 35:6777-6785.
Chen, J., Bai, G., Liang, S. and Li, Z. 2016. Automatic image cropping: a computational complexity study. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 507-515. Institute of Electrical and Electronics Engineers, New York, USA.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L. 2009. ImageNet: a large-scale hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition. pp. 248-255. Institute of Electrical and Electronics Engineers, New York, USA.
Food and Agriculture Organization of the United Nations 2022. Crops and livestock products. The FAO Statistical Database-Agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy.
Fox, R. T. V. and Narra, H. P. 2006. Plant disease diagnosis. In:
The epidemiology of plant diseases, eds. by B. Cookr, D. Jones and B. Kaye, pp. 1-42. Springer, Dordrecht, Netherlands.
Freeman, S., Katan, T. and Shabi, E. 1998. Characterization of
Colletotrichum species responsible for anthracnose diseases of various fruits.
Plant Dis. 82:596-605.
Goodfellow, I., Bengio, Y. and Courville, A. 2016. Deep learning. MIT Press, Cambridge, MA, USA. pp. 800.
Gu, Y. H., Yin, H., Jin, D., Park, J.-H. and Yoo, S. J. 2021. Image-based hot pepper disease and pest diagnosis using transfer learning and fine-tuning.
Front. Plant Sci. 12:724487.
Hue, Y., Kim, J. H., Lee, G., Choi, B., Sim, H., Jeon, J., Ahn, M.-I., Han, Y. K. and Kim, K.-T. 2024. Artificial intelligence plant doctor: plant disease diagnosis using Gpt4-vision.
Res. Plant Dis. 30:99-102.
Ioffe, S. and Szegedy, C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, eds. by F. Bach and D. Blei, pp. 448-456. JMLR.org, Lille, France.
Kamilaris, A. and Prenafeta-Boldú, F. X. 2018. Deep learning in agriculture: a survey.
Comput. Electron. Agric. 147:70-90.
Kaya, Y. and Gürsoy, E. 2023. A novel multi-head CNN design to identify plant diseases using the fusion of RGB images.
Ecol. Inform. 75:101998.
Kim, S.-H., Choi, J., Choi, Y.-J., Park, B.-Y., Lee, S.-H., Kim, G. H., Kong, H. G., Kim, D., Kim, S., Kim, Y., Back, C.-G., Byun, H.-S., Seo, J. K., Yu, J. M., Yoon, J.-Y., Lee, D.-H., Lee, S.-Y., Lim, S., Jeon, Y., Chun, J., Choi, I., Choi, I.-Y., Choi, H.-W., Hong, J. S. and Hong, S.-B. 2023. Introduction of List of Plant Diseases in Korea 6.1st edition (2023 revised version).
Res. Plant Dis. 29:331-344 (in Korean).
Kiran, R., Akhtar, J., Kumar, P. and Shekhar, M. 2020. Anthracnose of chilli: status, diagnosis, and management. In:
Capsicum, eds. by A. Dekebo, IntechOpen, London.
Liu, Z., Xu, Z., Jin, J., Shen, Z. and Darrell, T. 2023. Dropout reduces underfitting. In: Proceedings of the 40th International Conference on Machine Learning, eds. by A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato and J. Scarlett, pp. 22233-22248. JMLR.org, Hawaii, HI, USA.
López, M. M., Bertolini, E., Olmos, A., Caruso, P., Gorris, M. T., Llop, P., Penyalver, R. and Cambra, M. 2003. Innovative tools for detection of plant pathogenic viruses and bacteria.
Int. Microbiol. 6:233-243.
McCann, M. T., Jin, K. H. and Unser, M. 2017. Convolutional neural networks for inverse problems in imaging: a review.
IEEE Signal Process. Mag. 34:85-95.
Mohanty, S. P., Hughes, D. P. and Salathé, M. 2016. Using deep learning for image-based plant disease detection.
Front. Plant Sci. 7:1419.
Naik, B. N., Malmathanraj, R. and Palanisamy, P. 2022. Detection and classification of chilli leaf disease using a squeeze-and-excitation-based CNN model.
Ecol. Inform. 69:101663.
Park, J.-Y., Kim, H.-J. and Kim, K. 2020. Accessing impact of DCGAN image data augmentation for CNN based tomato disease classification.
J. Digit. Contents Soc. 21:959-967.
Prechelt, L. 1998. Automatic early stopping using cross validation: quantifying the criteria.
Neural Netw. 11:761-767.
Ramcharan, A., Baranowski, K., McCloskey, P., Ahmed, B., Legg, J. and Hughes, D. P. 2017. Deep learning for image-based cassava disease detection.
Front. Plant Sci. 8:1852.
Sanida, M. V., Sanida, T., Sideris, A. and Dasygenis, M. 2023. An efficient hybrid CNN classification model for tomato crop disease.
Technologies 11:10.
Sankaran, S., Mishra, A., Ehsani, R. and Davis, C. 2010. A review of advanced techniques for detecting plant diseases.
Comput. Electron. Agric. 72:1-13.
Smith, S. L., Kindermans, P.-J., Ying, C. and Le, Q. V. 2018. Don’t decay the learning rate, increase the batch size. In: ICLR 2018 Conference. International Conference on Learning Representations; Vancouver, Canada.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. 2014. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15:1929-1958.
Suh, B., Ling, H., Bederson, B. B. and Jacobs, D. W. 2003. Automatic thumbnail cropping and its effectiveness. In: Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technoloy: UIST ‘03; pp 95-104. Association for Computing Machinery, Vancouver, Canada.
Van der Maaten, L. and Hinton, G. 2008. Visualizing data using t-SNE. J. Mach. Learn. Res. 9:2579-2605.
Wu, Q., Ji, M. and Deng, Z. 2020. Automatic detection and severity assessment of pepper bacterial spot disease via multimodels based on convolutional neural networks.
Int. J. Agric. Environ. Inf. Syst. 11:29-43.
Xiang, Q., Guo, W., Tang, X., Cui, S., Zhang, F., Liu, X., Zhao, J., Zhang, H., Mao, B. and Chen, W. 2021. Capsaicin—the spicy ingredient of chili peppers: a review of the gastrointestinal effects and mechanisms.
Trends Food Sci. Technol. 116:755-765.
Yosinski, J., Clune, J., Bengio, Y. and Lipson, H. 2014. How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems 27, NIPS’14: Proceedings of the 28th International Conference on Neural Information Processing Systems, eds. by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence and K. Q. Weinberger, pp. 3320-3328. Springer, New York, USA.
Zeng, Y., Zhao, Y., Yu, Y., Tang, Y. and Tang, Y. 2021. Pepper disease detection model based on convolutional neural network and transfer learning.
IOP Conf. Ser. Earth Environ. Sci. 792:012001.