Alonso, A., Greenlee, M., Matts, J., Kline, J., Davis, K. J. and Miller, R. K. 2015. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins.
Cytoskeleton 72:305-339.
Augustine, R. C., York, S. L., Rytz, T. C. and Vierstra, R. D. 2016. Defining the SUMO system in maize: SUMOylation is up-regulated during endosperm development and rapidly induced by stress.
Plant Physiol. 171:2191-2210.
Azizullah Noman, M., Gao, Y., Wang, H., Xiong, X., Wang, J., Li, D. and Song, F. 2023. The SUMOylation pathway components are required for vegetative growth, asexual development, cytotoxic responses, and programmed cell death events in
Fusarium oxysporum f. sp. niveum.
J. Fungi 9:94.
Balakirev, M. Y., Mullally, J. E., Favier, A., Assard, N., Sulpice, E., Lindsey, D. F., Rulina, A. V., Gidrol, X. and Wilkinson, K. D. 2015. Wss1 metalloprotease partners with Cdc48/Doa1 in processing genotoxic SUMO conjugates.
eLife 4:e06763.
Bauer, S. L., Chen, J. and Åström, S. U. 2019. Helicase/SUMO-targeted ubiquitin ligase Uls1 interacts with the holliday junction resolvase Yen1.
PLoS ONE 14:e0214102.
Benlloch, R. and Lois, L. M. 2018. Sumoylation in plants: mechanistic insights and its role in drought stress.
J. Exp. Bot. 69:4539-4554.
Bernier-Villamor, V., Sampson, D. A., Matunis, M. J. and Lima, C. D. 2002. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1.
Cell 108:345-356.
Budhiraja, R., Hermkes, R., Müller, S., Schmidt, J., Colby, T., Panigrahi, K., Coupland, G. and Bachmair, A. 2009. Substrates related to chromatin and to RNA-dependent processes are modified by Arabidopsis SUMO isoforms that differ in a conserved residue with influence on desumoylation.
Plant Physiol. 149:1529-1540.
Castaño-Miquel, L., Seguí, J., Manrique, S., Teixeira, I., Carretero-Paulet, L., Atencio, F. and Lois, L. M. 2013. Diversification of SUMO-activating enzyme in
Arabidopsis: implications in SUMO conjugation.
Mol. Plant 6:1646-1660.
Catala, R., Ouyang, J., Abreu, I. A., Hu, Y., Seo, H., Zhang, X. and Chua, N.-H. 2007. The
Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses.
Plant Cell 19:2952-2966.
Celen, A. B. and Sahin, U. 2020. Sumoylation on its 25th anniversary: mechanisms, pathology, and emerging concepts.
FEBS J. 287:3110-3140.
Chandrasekharan, M. B., Huang, F. and Sun, Z.-W. 2009. Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability.
Proc. Natl. Acad. Sci. U. S. A. 106:16686-16691.
Cheng, C.-H., Lo, Y.-H., Liang, S.-S., Ti, S.-C., Lin, F.-M., Yeh, C.-H., Huang, H.-Y. and Wang, T.-F. 2006. SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of
Saccharomyces cerevisiae.
Genes Dev. 20:2067-2081.
Cheung, P., Tanner, K. G., Cheung, W. L., Sassone-Corsi, P., Denu, J. M. and Allis, C. D. 2000. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation.
Mol. Cell 5:905-915.
Colby, T., Matthäi, A., Boeckelmann, A. and Stuible, H.-P. 2006. SUMO-conjugating and SUMO-deconjugating enzymes from
Arabidopsis.
Plant Physiol. 142:318-332.
Colignon, B., Dieu, M., Demazy, C., Delaive, E., Muhovski, Y., Raes, M. and Mauro, S. 2017. Proteomic study of SUMOylation during
Solanum tuberosum-
Phytophthora infestans interactions.
Mol. Plant-Microbe Interact. 30:855-865.
Cuijpers, S. A. G., Willemstein, E. and Vertegaal, A. C. O. 2017. Converging small ubiquitin-like modifier (SUMO) and ubiquitin signaling: improved methodology identifies co-modified target proteins.
Mol. Cell. Proteomics 16:2281-2295.
Cui, Z., Scruggs, S. B., Gilda, J. E., Ping, P. and Gomes, A. V. 2014. Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond.
J. Mol. Cell. Cardiol. 71:32-42.
Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology.
Mol. Plant Pathol. 13:414-430.
Dielen, A.-S., Badaoui, S., Candresse, T. and German-Retana, S. 2010. The ubiquitin/26S proteasome system in plant-pathogen interactions: a never-ending hide-and-seek game.
Mol. Plant Pathol. 11:293-308.
Duan, G. and Walther, D. 2015. The roles of post-translational modifications in the context of protein interaction networks.
PLoS Comput. Biol. 11:e1004049.
Eisenhardt, N., Chaugule, V. K., Koidl, S., Droescher, M., Dogan, E., Rettich, J., Sutinen, P., Imanishi, S. Y., Hofmann, K., Palvimo, J. J. and Pichler, A. 2015. A new vertebrate SUMO enzyme family reveals insights into SUMO-chain assembly.
Nat. Struct. Mol. Biol. 22:959-967.
Esteras, M., Liu, I.-C., Snijders, A. P., Jarmuz, A. and Aragon, L. 2017. Identification of SUMO conjugation sites in the budding yeast proteome.
Microb. Cell 4:331-341.
Gali, H., Juhasz, S., Morocz, M., Hajdu, I., Fatyol, K., Szukacsov, V., Burkovics, P. and Haracska, L. 2012. Role of SUMO modification of human PCNA at stalled replication fork.
Nucleic Acids Res. 40:6049-6059.
Garvin, A. J., Densham, R. M., Blair-Reid, S. A., Pratt, K. M., Stone, H. R., Weekes, D., Lawrence, K. J. and Morris, J. R. 2013. The deSUMOylase SENP7 promotes chromatin relaxation for homologous recombination DNA repair.
EMBO Rep. 14:975-983.
Garza, R. and Pillus, L. 2013. STUbLs in chromatin and genome stability.
Biopolymers 99:146-154.
Gill, G. 2004. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms?
Genes Dev. 18:2046-2059.
Goldstein, G., Scheid, M., Hammerling, U., Schlesinger, D. H., Niall, H. D. and Boyse, E. A. 1975. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells.
Proc. Natl. Acad. Sci. U. S. A. 72:11-15.
Gong, L., Li, B., Millas, S. and Yeh, E. T. 1999. Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex.
FEBS Lett. 448:185-189.
Grosset, M., Desnos-Ollivier, M., Godet, C., Kauffmann-Lacroix, C. and Cazenave-Roblot, F. 2016. Recurrent episodes of Candidemia due to
Candida glabrata,
Candida tropicalis and
Candida albicans with acquired echinocandin resistance.
Med. Mycol. Case Rep. 14:20-23.
Gujjula, R., Veeraiah, S., Kumar, K., Thakur, S. S., Mishra, K. and Kaur, R. 2016. Identification of components of the SUMOylation Machinery in
Candida glabrata: role of deSUMOylation peptidase CgUlp2 in virulence.
J. Biol. Chem. 291:19573-19589.
Gupta, D., Garapati, H. S., Kakumanu, A. V. S., Shukla, R. and Mishra, K. 2020. SUMOylation in fungi: a potential target for intervention.
Comput. Struct. Biotechnol. J. 18:3484-3493.
Han, J., Liu, T., Huen, M. S. Y., Hu, L., Chen, Z. and Huang, J. 2014. SIVA1 directs the E3 ubiquitin ligase RAD18 for PCNA monoubiquitination.
J. Cell. Biol. 205:811-827.
Harting, R., Bayram, O., Laubinger, K., Valerius, O. and Braus, G. H. 2013. Interplay of the fungal sumoylation network for control of multicellular development.
Mol. Microbiol. 90:1125-1145.
He, Z., Huang, T., Ao, K., Yan, X. and Huang, Y. 2017. Sumoylation, phosphorylation, and acetylation fine-tune the turnover of plant immunity components mediated by ubiquitination.
Front. Plant Sci. 8:1682.
Hermkes, R., Fu, Y.-F., Nürrenberg, K., Budhiraja, R., Schmelzer, E., Elrouby, N., Dohmen, R. J., Bachmair, A. and Coupland, G. 2011. Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1.
Planta 233:63-73.
Hibbert, R. G., Huang, A., Boelens, R. and Sixma, T. K. 2011. E3 ligase Rad18 promotes monoubiquitination rather than ubiquitin chain formation by E2 enzyme Rad6.
Proc. Natl. Acad. Sci. U. S. A. 108:5590-5595.
Hoppe, T. 2005. Multiubiquitylation by E4 enzymes: ‘one size’ doesn’t fit all.
Trends Biochem. Sci. 30:183-187.
Horio, T., Szewczyk, E., Oakley, C. E., Osmani, A. H., Osmani, S. A. and Oakley, B. R. 2019. SUMOlock reveals a more complete
Aspergillus nidulans SUMOylome.
Fungal Genet. Biol. 127:50-59.
Hung, S.-H., Wong, R. P., Ulrich, H. D. and Kao, C.-F. 2017. Monoubiquitylation of histone H2B contributes to the bypass of DNA damage during and after DNA replication.
Proc. Natl. Acad. Sci. U. S. A. 114:E2205-E2214.
Isasa, M., Katz, E. J., Kim, W., Yugo, V., González, S., Kirkpatrick, D. S., Thomson, T. M., Finley, D., Gygi, S. P. and Crosas, B. 2010. Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome.
Mol. Cell 38:733-745.
Ishida, T., Yoshimura, M., Miura, K. and Sugimoto, K. 2012. MMS21/HPY2 and SIZ1, two Arabidopsis SUMO E3 ligases, have distinct functions in development.
PLoS ONE 7:e46897.
Islam, A., Tebbji, F., Mallick, J., Regan, H., Dumeaux, V., Omran, R. P. and Whiteway, M. 2019. Mms21: a putative SUMO E3 ligase in
Candida albicans that negatively regulates invasiveness and filamentation, and is required for the genotoxic and cellular stress response.
Genetics 211:579-595.
Jian, Y., Chen, X., Sun, K., Liu, Z., Cheng, D., Cao, J., Liu, J., Cheng, X., Wu, L., Zhang, F., Luo, Y., Hahn, M., Ma, Z. and Yin, Y. 2022. SUMOylation regulates pre-mRNA splicing to overcome DNA damage in fungi. New Phytol. 237:2298-2315.
Jmii, S. and Cappadocia, L. 2021. Plant SUMO E3 ligases: function, structural organization, and connection with DNA.
Front. Plant Sci. 12:652170.
Johnson, E. S. and Blobel, G. 1997. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p.
J. Biol. Chem. 272:26799-26802.
Johnson, E. S. and Gupta, A. A. 2001. An E3-like factor that promotes SUMO conjugation to the yeast septins.
Cell 106:735-744.
Johnson, E. S., Schwienhorst, I., Dohmen, R. J. and Blobel, G. 1997. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer.
EMBO J. 16:5509-5519.
Kagey, M. H., Melhuish, T. A. and Wotton, D. 2003. The polycomb protein Pc2 is a SUMO E3.
Cell 113:127-137.
Keiten-Schmitz, J., Schunck, K. and Müller, S. 2019. SUMO chains rule on chromatin occupancy.
Front. Cell Dev. Biol. 7:343.
Kelsall, I. R. 2022. Non-lysine ubiquitylation: doing things differently.
Front. Mol. Biosci. 9:1008175.
Kerscher, O., Felberbaum, R. and Hochstrasser, M. 2006. Modification of proteins by ubiquitin and ubiquitin-like proteins.
Annu. Rev. Cell Dev. Biol. 22:159-180.
Kliza, K. and Husnjak, K. 2020. Resolving the complexity of ubiquitin networks.
Front. Mol. Biosci. 7:21.
Klug, H., Xaver, M., Chaugule, V. K., Koidl, S., Mittler, G., Klein, F. and Pichler, A. 2013. Ubc9 sumoylation controls SUMO chain formation and meiotic synapsis in
Saccharomyces cerevisiae.
Mol. Cell 50:625-636.
Kocaturk, N. M. and Gozuacik, D. 2018. Crosstalk between mammalian autophagy and the ubiquitin-proteasome system.
Front. Cell Dev. Biol. 6:128.
Køhler, J. B., Jørgensen, M. L., Beinoraité, G., Thorsen, M. and Thon, G. 2013. Concerted action of the ubiquitin-fusion degradation protein 1 (Ufd1) and Sumo-targeted ubiquitin ligases (STUbLs) in the DNA-damage response.
. PLoS ONE 8:e80442.
Køhler, J. B., Tammsalu, T., Jørgensen, M. M., Steen, N., Hay, R. T. and Thon, G. 2015. Targeting of SUMO substrates to a Cdc48-Ufd1-Npl4 segregase and STUbL pathway in fission yeast.
Nat. Commun. 6:8827.
Krogan, N. J., Dover, J., Wood, A., Schneider, J., Heidt, J., Boateng, M. A., Dean, K., Ryan, O. W., Golshani, A., Johnston, M., Greenblatt, J. F. and Shilatifard, A. 2003. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation.
Mol. Cell 11:721-729.
Kurepa, J., Walker, J. M., Smalle, J., Gosink, M. M., Davis, S. J., Durham, T. L., Sung, D.-Y. and Vierstra, R. D. 2003. The small ubiquitin-like modifier (SUMO) protein modification system in
Arabidopsis: accumulation of SUMO1 and -2 conjugates is increased by stress.
J. Biol. Chem. 278:6862-6872.
Leach, M. D., Stead, D. A., Argo, E. and Brown, A. J. P. 2011. Identification of sumoylation targets, combined with inactivation of
SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen
Candida albicans.
Mol. Biol. Cell 22:687-702.
Li, G. X. H., Vogel, C. and Choi, H. 2018. PTMscape: an open source tool to predict generic post-translational modifications and map modification crosstalk in protein domains and biological processes.
Mol. Omics 14:197-209.
Li, S.-J. and Hochstrasser, M. 1999. A new protease required for cell-cycle progression in yeast.
Nature 398:246-251.
Liang, Q., Deng, H., Li, X., Wu, X., Tang, Q., Chang, T.-H., Peng, H., Rauscher, F. J. 3rd, Ozato, K. and Zhu, F. 2011. Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7.
J. Immunol. 187:4754-4763.
Liang, Y.-C., Lee, C.-C., Yao, Y.-L., Lai, C.-C., Schmitz, M. L. and Yang, W.-M. 2016. SUMO5, a novel poly-SUMO isoform, regulates PML nuclear bodies.
Sci. Rep. 6:26509.
Liebelt, F., Jansen, N. S., Kumar, S., Gracheva, E., Claessens, L. A., Verlaan-de Vries, M., Willemstein, E. and Vertegaal, A. C. O. 2019. The poly-SUMO2/3 protease SENP6 enables assembly of the constitutive centromere-associated network by group deSUMOylation.
Nat. Commun. 10:3987.
Lim, Y.-J., Kim, K.-T. and Lee, Y.-H. 2018. SUMOylation is required for fungal development and pathogenicity in the rice blast fungus
Magnaporthe oryzae.
Mol. Plant Pathol. 19:2134-2148.
Lim, Y.-J. and Lee, Y.-H. 2020. F-box only and CUE proteins are crucial ubiquitination-associated components for conidiation and pathogenicity in the rice blast fungus,
Magnaporthe oryzae.
Fungal Genet. Biol. 144:103473.
Lim, Y.-J., Yoon, Y.-J., Lee, H., Choi, G., Kim, S., Ko, J., Kim, J. H., Kim, K.-T. and Lee, Y.-H. 2024. Nuclear localization sequence of MoHTR1, a
Magnaporthe oryzae effector, for transcriptional reprogramming of immunity genes in rice.
Nat. Commun. 15:9764.
Liu, C., Li, Z., Xing, J., Yang, J., Wang, Z., Zhang, H., Chen, D., Peng, Y.-L. and Chen, X.-L. 2018. Global analysis of sumoylation function reveals novel insights into development and appressorium-mediated infection of the rice blast fungus.
New Phytol. 219:1031-1047.
Liu, L., Jiang, Y., Zhang, X., Wang, X., Wang, Y., Han, Y., Coupland, G., Jin, J. B., Searle, I., Fu, Y.-F. and Chen, F. 2017. Two SUMO proteases SUMO PROTEASE RELATED TO FERTILITY1 and 2 are required for fertility in
Arabidopsis.
Plant Physiol. 175:1703-1719.
Lois, L. M. 2010. Diversity of the SUMOylation machinery in plants.
Biochem. Soc. Trans. 38:60-64.
Malaker, P. K., Barma, N. C. D., Tiwary, T. P., Collis, W. J., Duveiller, E., Singh, P. K., Joshi, A. K., Singh, R. P., Braun, H.-J., Peterson, G. L., Pedley, K. F., Farman, M. L. and Valent, B. 2016. First report of wheat blast caused by
Magnaporthe oryzae pathotype
triticum in Bangladesh.
Plant Dis. 100:2330.
Martín-Rufo, R., de la Vega-Barranco, G. and Lecona, E. 2022. Ubiquitin and SUMO as timers during DNA replication.
Semin. Cell Dev. Biol. 132:62-73.
Matic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S. C., Tatham, M. H., Hay, R. T., Lamond, A. I., Mann, M. and Vertegaal, A. C. O. 2008.
In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an
in vitro to
in vivo strategy.
Mol. Cell. Proteomics 7:132-144.
McManus, F. P., Lamoliatte, F. and Thibault, P. 2017. Identification of cross talk between SUMOylation and ubiquitylation using a sequential peptide immunopurification approach.
Nat. Protoc. 12:2354-2355.
Meluh, P. B. and Koshland, D. 1995. Evidence that the MIF2 gene of
Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C.
Mol. Biol. Cell 6:793-807.
Mendes, A. V., Grou, C. P., Azevedo, J. E. and Pinto, M. P. 2016. Evaluation of the activity and substrate specificity of the human SENP family of SUMO proteases.
Biochim. Biophys. Acta 1863:139-147.
Morrell, R. and Sadanandom, A. 2019. Dealing with stress: a review of plant SUMO proteases.
Front. Plant Sci. 10:1122.
Mullen, J. R. and Brill, S. J. 2008. Activation of the Slx5-Slx8 ubiquitin ligase by poly-small ubiquitin-like modifier conjugates.
J. Biol. Chem. 283:19912-19921.
Murtas, G., Reeves, P. H., Fu, Y.-F., Bancroft, I., Dean, C. and Coupland, G. 2003. A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates.
Plant Cell 15:2308-2319.
Nathan, D., Ingvarsdottir, K., Sterner, D. E., Bylebyl, G. R., Dokmanovic, M., Dorsey, J. A., Whelan, K. A., Krsmanovic, M., Lane, W. S., Meluh, P. B., Johnson, E. S. and Berger, S. L. 2006. Histone sumoylation is a negative regulator in
Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications.
Genes Dev. 20:966-976.
Nie, M., Aslanian, A., Prudden, J., Heideker, J., Vashisht, A. A., Wohlschlegel, J. A., Yates, J. R. 3rd and Boddy, M. N. 2012. Dual recruitment of Cdc48 (p97)-Ufd1-Npl4 ubiquitin-selective segregase by small ubiquitin-like modifier protein (SUMO) and ubiquitin in SUMO-targeted ubiquitin ligase-mediated genome stability functions.
J. Biol. Chem. 287:29610-29619.
Nie, M. and Boddy, M. N. 2016. Cooperativity of the SUMO and ubiquitin pathways in genome stability.
Biomolecules 6:14.
Nie, M., Moser, B. A., Nakamura, T. M. and Boddy, M. N. 2017. SUMO-targeted ubiquitin ligase activity can either suppress or promote genome instability, depending on the nature of the DNA lesion.
PLoS Genet. 13:e1006776.
Nie, X., Yu, S., Qiu, M., Wang, X., Wang, Y., Bai, Y., Zhang, F. and Wang, S. 2016.
Aspergillus flavus SUMO contributes to fungal virulence and toxin attributes.
J. Agric. Food Chem. 64:6772-6782.
Northam, M. R. and Trujillo, K. M. 2016. Histone H2B mono-ubiquitylation maintains genomic integrity at stalled replication forks.
Nucleic Acids Res. 44:9245-9255.
Oh, Y., Franck, W. L., Han, S.-O., Shows, A., Gokce, E., Muddiman, D. C. and Dean, R. A. 2012. Polyubiquitin is required for growth, development and pathogenicity in the rice blast fungus
Magnaporthe oryzae.
PLoS ONE 7:e42868.
Ohkuni, K., Takahashi, Y., Fulp, A., Lawrimore, J., Au, W.-C., Pasupala, N., Levy-Myers, R., Warren, J., Strunnikov, A., Baker, R. E., Kerscher, O., Bloom, K. and Basrai, M. A. 2016. SUMO-targeted ubiquitin ligase (STUbL) Slx5 regulates proteolysis of centromeric histone H3 variant Cse4 and prevents its mislocalization to euchromatin.
Mol. Biol. Cell 27:1500-1510.
Orosa, B., Yates, G., Verma, V., Srivastava, A. K., Srivastava, M., Campanaro, A., De Vega, D., Fernandes, A., Zhang, C., Lee, J., Bennett, M. J. and Sadanandom, A. 2018. SUMO conjugation to the pattern recognition receptor FLS2 triggers intracellular signalling in plant innate immunity.
Nat. Commun. 9:5185.
Papouli, E., Chen, S., Davies, A. A., Huttner, D., Krejci, L., Sung, P. and Ulrich, H. D. 2005. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p.
Mol. Cell 19:123-133.
Park, H. J., Kim, W.-Y., Park, H. C., Lee, S. Y., Bohnert, H. J. and Yun, D.-J. 2011. SUMO and SUMOylation in plants.
Mol. Cells 32:305-316.
Parker, J. L. and Ulrich, H. D. 2012. A SUMO-interacting motif activates budding yeast ubiquitin ligase Rad18 towards SUMO-modified PCNA.
Nucleic Acids Res. 40:11380-11388.
Paulussen, C., Hallsworth, J. E., Álvarez-Pérez, S., Nierman, W. C., Hamill, P. G., Blain, D., Rediers, H. and Lievens, B. 2017. Ecology of aspergillosis: insights into the pathogenic potency of
Aspergillus fumigatus and some other
Aspergillus species.
Microb. Biotechnol. 10:296-322.
Praefcke, G. J. K., Hofmann, K. and Dohmen, R. J. 2012. SUMO playing tag with ubiquitin.
Trends Biochem. Sci. 37:23-31.
Ronai, Z. A. 2016. Monoubiquitination in proteasomal degradation.
Proc. Natl. Acad. Sci. U. S. A. 113:8894-8896.
Saitoh, H. and Hinchey, J. 2000. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3.
J. Biol. Chem. 275:6252-6258.
Salas-Lloret, D. and González-Prieto, R. 2022. Insights in post-translational modifications: ubiquitin and SUMO.
Int. J. Mol. Sci. 23:3281.
Saracco, S. A., Miller, M. J., Kurepa, J. and Vierstra, R. D. 2007. Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential.
Plant Physiol. 145:119-134.
Sato, Y., Tsuchiya, H., Yamagata, A., Okatsu, K., Tanaka, K., Saeki, Y. and Fukai, S. 2019. Structural insights into ubiquitin recognition and Ufd1 interaction of Npl4.
Nat. Commun. 10:5708.
Schmidt, D. and Müller, S. 2002. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity.
Proc. Natl. Acad. Sci. U. S. A. 99:2872-2877.
Schulz, S., Chachami, G., Kozaczkiewicz, L., Winter, U., Stankovic-Valentin, N., Haas, P., Hofmann, K., Urlaub, H., Ovaa, H., Wittbrodt, J., Meulmeester, E. and Melchior, F. 2012. Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions.
EMBO Rep. 13:930-938.
Seufert, W., Futcher, B. and Jentsch, S. 1995. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins.
Nature 373:78-81.
Shao, W., Sun, K., Ma, T., Jiang, H., Hahn, M., Ma, Z., Jiao, C. and Yin, Y. 2023. SUMOylation regulates low-temperature survival and oxidative DNA damage tolerance in
Botrytis cinerea.
New Phytol. 238:817-834.
Shin, E. J., Shin, H. M., Nam, E., Kim, W. S., Kim, J.-H., Oh, B.-H. and Yun, Y. 2012. DeSUMOylating isopeptidase: a second class of SUMO protease.
EMBO Rep. 13:339-346.
Smits, V. A. J. and Freire, R. 2016. USP7/HAUSP: a SUMO deubiquitinase at the heart of DNA replication.
BioEssays 38:863-868.
Sriramachandran, A. M. and Dohmen, R. J. 2014. SUMO-targeted ubiquitin ligases.
Biochim. Biophys. Acta 1843:75-85.
Su, S., Zhang, Y. and Liu, P. 2020. Roles of ubiquitination and SUMOylation in DNA damage response.
Curr. Issues Mol. Biol. 35:59-84.
Takahashi, Y., Kahyo, T., Toh-E, A., Yasuda, H. and Kikuchi, Y. 2001. Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates.
J. Biol. Chem. 276:48973-48977.
Tanaka, K. 2009. The proteasome: overview of structure and functions.
Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 85:12-36.
Tatham, M. H., Kim, S., Jaffray, E., Song, J., Chen, Y. and Hay, R. T. 2005. Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection.
Nat. Struct. Mol. Biol. 12:67-74.
Tomanov, K., Zeschmann, A., Hermkes, R., Eifler, K., Ziba, I., Grieco, M., Novatchkova, M., Hofmann, K., Hesse, H. and Bachmair, A. 2014.
Arabidopsis PIAL1 and 2 promote SUMO chain formation as E4-type SUMO ligases and are involved in stress responses and sulfur metabolism.
Plant Cell 26:4547-4560.
Trujillo, K. M., Tyler, R. K., Ye, C., Berger, S. L. and Osley, M. A. 2011. A genetic and molecular toolbox for analyzing histone ubiquitylation and sumoylation in yeast.
Methods 54:296-303.
Trulsson, F. and Vertegaal, A. C. O. 2022. Site-specific proteomic strategies to identify ubiquitin and SUMO modifications: challenges and opportunities.
Semin. Cell Dev. Biol. 132:97-108.
Ulman, A., Levin, T., Dassa, B., Javitt, A., Kacen, A., Shmueli, M. D., Eisenberg-Lerner, A., Sheban, D., Fishllevich, S., Levy, E. D. and Merbl, Y. 2021. Altered protein abundance and localization inferred from sites of alternative modification by ubiquitin and SUMO.
J. Mol. Biol. 433:167219.
Ulrich, H. D. 2008. The fast-growing business of SUMO chains.
Mol. Cell 32:301-305.
Wagner, K., Kunz, K., Piller, T., Tascher, G., Hölper, S., Stehmeier, P., Keiten-Schmitz, J., Schick, M., Keller, U. and Müller, S. 2019. The SUMO isopeptidase SENP6 functions as a rheostat of chromatin residency in genome maintenance and chromosome dynamics.
Cell Rep. 29:480-494.
Wang, C.-Y. and She, J.-X. 2008. SUMO4 and its role in type 1 diabetes pathogenesis.
Diabetes Metab. Res. Rev. 24:93-102.
Wang, Y., Yang, N., Zheng, Y., Yue, J., Bhadauria, V., Peng, Y.-L. and Chen, Q. 2022. Ubiquitination in the rice blast fungus
Magnaporthe oryzae: from development and pathogenicity to stress responses.
Phytopathol. Res. 4:1.
Wilson, V. G. and Heaton, P. R. 2008. Ubiquitin proteolytic system: focus on SUMO.
Expert Rev. Proteomics 5:121-135.
Wong, K. H., Todd, R. B., Oakley, B. R., Oakley, C. E., Hynes, M. J. and Davis, M. A. 2008. Sumoylation in
Aspergillus nidulans: sumO inactivation, overexpression and live-cell imaging.
Fungal Genet. Biol. 45:728-737.
Wu, X.-M., Zhang, B.-S., Zhao, Y.-L., Wu, H.-W., Gao, F., Zhang, J., Zhao, J.-H. and Guo, H.-S. 2023. DeSUMOylation of a
Verticillium dahliae enolase facilitates virulence by derepressing the expression of the effector
VdSCP8.
Nat. Commun. 14:4844.
Xie, Y., Kerscher, O., Kroetz, M. B., McConchie, H. F., Sung, P. and Hochstrasser, M. 2007. The yeast Hex3· Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation.
J. Biol. Chem. 282:34176-34184.
Yan, M., Nie, X., Wang, H., Gao, N., Liu, H. and Chen, J. 2015. SUMOylation of Wor1 by a novel SUMO E3 ligase controls cell fate in
Candida albicans.
Mol. Microbiol. 98:69-89.
Yang, Y., He, Y., Wang, X., Liang, Z., He, G., Zhang, P., Zhu, H., Xu, N. and Liang, S. 2017. Protein SUMOylation modification and its associations with disease.
Open Biol. 7:170167.
Zhang, W., Qin, Z., Zhang, X. and Xiao, W. 2011. Roles of sequential ubiquitination of PCNA in DNA-damage tolerance.
FEBS Lett. 585:2786-2794.
Zhang, Y. and Reinberg, D. 2001. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails.
Genes Dev. 15:2343-2360.
Zhang, Z., Li, J., Liu, H., Chong, K. and Xu, Y. 2015. Roles of ubiquitination-mediated protein degradation in plant responses to abiotic stresses.
Environ. Exp. Bot. 114:92-103.
Zhao, X. and Blobel, G. 2005. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization.
Proc. Natl. Acad. Sci. U. S. A. 102:4777-4782.