Abdallah, Y., Nehela, Y., Ogunyemi, S. O., Ijaz, M., Ahmed, T., Elashmony, R., Alkhalifah, D. H. M., Hozzein, W. N., Xu, L., Yan, C., Chen, J. and Li, B. 2023. Bio-functionalized nickel-silica nanoparticles suppress bacterial leaf blight disease in rice (
Oryza sativa L.).
Front. Plant Sci. 14:1216782.
Alexandratos, N. and Bruinsma, J. 2012. World Agriculture towards 2030/2050: the 2012 revision. ESA Working Paper No. 12-03. Food and Agriculture Organization of the United Nations, Rome, Italy. pp. 147.
Aqaei, P., Weisany, W., Diyanat, M., Razmi, J. and Struik, P. C. 2020. Response of maize (
Zea mays L.) to potassium nano-silica application under drought stress.
J. Plant Nutr. 43:1205-1216.
Asgari, F., Majd, A., Janoubi, P. and Najafi, F. 2018. Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (
Avena sativa L.).
Plant Physiol. Biochem. 127:152-160.
Badawy, S. A., Zayed, B. A., Bassiouni, S. M. A., Mahdi, A. H. A., Majrashi, A., Ali, E. F. and Seleiman, M. F. 2021. Influence of nano silicon and nano selenium on root characters, growth, ion selectivity, yield, and yield components of rice (
Oryza sativa L.) under salinity conditions.
Plants 10:1657.
Berahim, Z., Omar, M. H., Zakaria, N.-I., Ismail, M. R., Rosle, R., Roslin, N. A. and Che’Ya, N. N. 2021. Silicon improves yield performance by enhancement in physiological responses, crop imagery, and leaf and culm sheath morphology in new rice line, PadiU Putra.
BioMed Res. Int. 2021:6679787.
Bhat, J. A., Rajora, N., Raturi, G., Sharma, S., Dhiman, P., Sanand, S., Shivaraj, S. M., Sonah, H. and Deshmukh, R. 2021. Silicon nanoparticles (SiNPs) in sustainable agriculture: major emphasis on the practicality, efficacy and concerns.
Nanoscale Adv. 3:4019-4028.
Brisson, L. F., Tenhaken, R. and Lamb, C. 1994. Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance.
Plant Cell 6:1703-1712.
Cai, K., Gao, D., Luo, S., Zeng, R., Yang, J. and Zhu, X. 2018. Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease.
Physiol. Plant 134:324-333.
Chen, H., Wang, S. and Zhang, Q. 2002. New gene for bacterial blight resistance in rice located on chromosome 12 identified from Minghui 63, an Elite Restorer Line.
Phytopathology 92:750-754.
Chen, W., Yao, X., Cai, K. and Chen, J. 2011. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption.
Biol. Trace Elem. Res. 142:67-76.
Chiang, K. S., Liu, H. I. and Bock, C. H. 2017. A discussion on disease severity index values: part I: warning on inherent errors and suggestions to maximise accuracy.
Ann. Appl. Biol. 171:139-154.
Chompa, S. S., Akter, A., Sadeq, A. B. M., Rahman, M. E., Rashid, H. O., Ibnat, N. and Hossain, M. B. 2022. An overview of major bacterial diseases of rice and management strategies for their control in Malaysia. Global Sci. J. 10:1074-1102.
Cui, Z.-Q., Zhu, B., Xie, G.-L., Li, B. and Huang, S.-W. 2016. Research status and the prospect of Burkholderia glumae, the pathogen causing bacterial panicle blight. Rice Sci. 23:111-118.
Devescovi, G., Bigirimana, J., Degrassi, G., Cabrio, L., LiPuma, J. J., Kim, J., Hwang, I. and Venturi, V. 2007. Involvement of a quorum-sensing-regulated lipase secreted by a clinical isolate of
Burkholderia glumae in severe disease symptoms in rice.
Appl. Environ. Microbiol. 73:4950-4958.
Du, J., Liu, B., Zhao, T., Xu, X., Lin, H., Ji, Y., Li, Y., Li, Z., Lu, C., Li, P., Zhao, H., Li, Y., Yin, Z. and Ding, X. 2022. Silica nanoparticles protect rice against biotic and abiotic stresses.
J. Nanobiotechnol. 20:197.
Elamawi, R. M., Tahoon, A. M., Elsharnoby, D. E. and El-Shafey, R. A. 2020. Bio-production of silica nanoparticles from rice husk and their impact on rice bakanae disease and grain yield.
Arch. Phytopathol. Plant Prot. 53:459-478.
Elshayb, O. M., Nada, A. M., Ibrahim, H. M., Amin, H. E. and Atta, A. M. 2021. Application of silica nanoparticles for improving growth, yield, and enzymatic antioxidant for the hybrid rice EHR1growing under water regime conditions.
Materials 14:1150.
Etesami, H. and Jeong, B. R. 2023. How does silicon help alleviate biotic and abiotic stresses in plants? Mechanisms and future prospects. In:
Plant stress mitigators: types, techniques and functions, eds. by M. Ghorbanpour and M. A. Shahid, pp. 359-402. Academic Press, London, UK.
Fleck, A. T., Nye, T., Repenning, C., Stahl, F., Zahn, M. and Schenk, M. K. 2011. Silicon enhances suberization and lignification in the roots of rice (
Oryza sativa).
J. Exp. Bot. 62:2001-2011.
Gill, S. S. and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.
Plant Physiol. Biochem. 48:909-930.
Gomathi, R., Vasantha, S., Shiyamala, S. and Rakkiyappan, P. 2013. Differential accumulation of salt-induced proteins in contrasting sugarcane genotypes. Eur. J. Biol. Sci. 6:7-11.
Hasanuzzaman, M., Nahar, K., Rahman, A., Mahmud, J. A., Hossain, S., Alam, K., Oku, H. and Fujita, M. 2017. Actions of biological trace elements in plant abiotic stress tolerance. In:
Essential plant nutrients, eds. by M. Naeem, A. A. Ansari and S. S. Gill, pp. 213-274. Springer, Cham, Germany.
Hegazy, H. S., Hassan, N. S. H., Abdel-Haliem, M. E. F. and Naguib, D. M. 2015. Biochemical response of rice plant to biotic and abiotic stress under silica ions and nanoparticles application.
Egypt. J. Bot. 55:79-103.
Huang, Y.-F., Wu, D.-H., Wang, C.-L., Du, P.-R., Cheng, C.-Y. and Cheng, C.-C. 2020. Survey of rice production practices and perception of weedy red rice (
Oryza sativa f.
spontanea) in Taiwan.
Weed Sci. 69:526-535.
Hussain, A., Rizwan, M., Ali, Q. and Ali, S. 2019. Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains.
Environ. Sci. Pollut. Res. 26:7579-7588.
Hussain, H. I., Yi, Z., Rookes, J. E., Kong, L. X. and Cahill, D. M. 2013. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants.
J. Nanoparticle Res. 15:1676.
Ibrahim, M. S. C., Meng, T. H., Ahmad, A., Ghazali, M. S. M., Abdullah, W. R. W. and Chuen, N. L. 2022. Potential of nanosilicon dioxide extraction from silicon-rich agriculture wastes as a plant growth promoter.
Adv. Nat. Sci. Nanosci. Nanotechnol. 13:033001.
Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T. and Hwang, I. 2003. Toxoflavin produced by
Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops.
Plant Dis. 87:890-895.
Jiang, Y., Yang, J., Li, M., Li, Y., Zhou, P., Wang, Q., Sun, Y., Zhu, G., Wang, Q., Zhang, P., Rui, Y. and Lynch, I. 2022. Effect of silica-based nanomaterials on seed germination and seedling growth of rice (
Oryza sativa L.).
Nanomaterials 12:4160.
Karimi, J. and Mohsenzadeh, S. 2016. Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings.
Russ. J. Plant Physiol. 63:119-123.
Karimi, M., Mirshekari, H., Aliakbari, M., Sahandi-Zangabad, P. and Hamblin, M. R. 2016. Smart mesoporous silica nanoparticles for controlled-release drug delivery.
Nanotechnol. Rev. 5:195-207.
Karunakaran, G., Suriyaprabha, R., Manivasakan, P., Yuvakkumar, R., Rajendran, V., Prabu, P. and Kannan, N. 2013. Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination.
IET Nanobiotechnol. 7:70-77.
Ke, Y., Hui, S. and Yuan, M. 2017.
Xanthomonas oryzae pv.
oryzae inoculation and growth rate on rice by leaf clipping method.
Bio Protoc. 7:e2568.
Khattab, H. I., Emam, M. A., Emam, M. M., Helal, N. M. and Mohamed, M. R. 2014. Effect of selenium and silicon on transcription factors
NAC5 and
DREB2A involved in drought-responsive gene expression in rice.
Biol. Plant 58:265-273.
Kheyri, N. 2022. Effect of silicon and nanosilicon application on rice yield and quality. In:
Silicon and nano-silicon in environmental stress management and crop quality improvement: progress and prospects, eds. by H. Etesami, A. H. Al Saeedi, H. El-Ramady, M. Fujita, M. Pessarakli and M. A. Hossain, pp. 297-307. Academic Press, London, UK.
Khush, G. 2003. Productivity improvements in rice.
Nutr. Rev. 61:S114-S116.
Kim, S., Park, J., Lee, J., Shin, D., Park, D.-S., Lim, J.-S., Choi, I.-Y. and Seo, Y.-S. 2014a. Understanding pathogenic
Burkholderia glumae metabolic and signalling pathways within rice tissues through
in vivo transcriptome analyses.
Gene 547:77-85.
Kim, Y. H., Khan, A. L., Waqas, M., Shim, J. K., Kim, D. H., Lee, K. Y. and Lee, I. J. 2014b. Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress.
J. Plant Growth Regul. 33:137-149.
Lee, Y. H., Ko, S.-J., Cha, K.-H. and Park, E. W. 2015. BGRcast: a disease forecast model to support decision-making for chemical sprays to control bacterial grain rot of rice.
Plant Pathol. J. 31:350-362.
Li, Y., Zhu, N., Liang, X., Bai, X., Zheng, L., Zhao, J., Li, Y.-F., Zhang, Z. and Gao, Y. 2020. Silica nanoparticles alleviate mercury toxicity
via immobilization and inactivation of Hg(II) in soybean (
Glycine max).
Environ. Sci. Nano 7:1807-1817.
Liang, Y. C., Sun, W. C., Si, J. and Römheld, V. 2005. Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in
Cucumis sativus.
Plant Pathol. 54:678-685.
Lu, X., Sun, D., Zhang, X., Hu, H., Kong, L., Rookes, J. E., Xie, J. and Cahill, D. M. 2020. Stimulation of photosynthesis and enhancement of growth and yield in
Arabidopsis thaliana treated with amine-functionalized mesoporous silica nanoparticles.
Plant Physiol. Biochem. 156:566-577.
Ma, J. F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses.
Soil Sci. Plant Nutr. 50:11-18.
Mahawar, L., Ramasamy, K. P., Suhel, M., Prasad, S. M., Živćák, M., Brestic, M., Rastogi, A. and Skalický, M. 2023. Silicon nanoparticles: comprehensive review on biogenic synthesis and applications in agriculture.
Environ. Res. 232:116292.
Maksimović, J. D., Mojović, M. and Maksimović, V. 2016. Silicon facilitates manganese phytoextraction by cucumber (
Cucumis sativus L.).
Zastita Materijala 57:424-429.
Mathur, P. and Roy, S. 2020. Nanosilica facilitates silica uptake, growth and stress tolerance in plants.
Plant Physiol. Biochem. 157:114-127.
Mia, M. A. B., Shamsuddin, Z. H. and Mahmood, M. 2012. Effects of rhizobia and plant growth promoting bacteria inoculation on germination and seedling vigor of lowland rice. Afr. J. Biotechnol. 11:3758-3765.
Naaz, H., Rawat, K., Saffeullah, P. and Umar, S. 2022. Silica nanoparticles synthesis and applications in agriculture for plant fertilization and protection: a review.
Environ. Chem. Lett. 21:539-559.
Naguib, D. M. and Abdalla, H. 2019. Metabolic status during germination of nano silica primed
Zea mays seeds under salinity stress.
J. Crop Sci. Biotechnol. 22:415-423.
Nandakumar, R., Shahjahan, A. K. M., Yuan, X. L., Dickstein, E. R., Groth, D. E., Clark, C. A., Cartwright, R. D. and Rush, M. C. 2009.
Burkholderia glumae and
B. gladioli cause bacterial panicle blight in rice in the Southern United States.
Plant Dis. 93:896-905.
Nath, A., Molnár, M. A., Albert, K., Das, A., Bánvölgyi, S., Márki, E. and Vatai, G. 2019. Agrochemicals from nanomaterials: synthesis, mechanisms of biochemical activities and applications.
Compr. Anal. Chem. 84:263-312.
Ng, L. C., Adila, Z. N., Hafiz, E. M. S., Aziz, A. and Ismail, M. R. 2020. Foliar sprayed silicon to induce defense-related enzymatic activity against
Pyricularia oryzae infection in aerobic rice.
Malays. Appl. Biol. 49:213-221.
Patel, Z. M., Mahapatra, R. and Jampala, S. S. M. 2020. Chapter 11 - Role of fungal elicitors in plant defense mechanism. In: Molecular aspects of plant beneficial microbes in agriculture, eds. by V. Sharma, R. Salwan and L. K. T. Al-Ani, pp. 143-158. Academic Press, Cambridge, MA, USA.
Pedraza, L. A., Bautista, J. and Uribe-Vélez, D. 2018. Seed-born
Burkholderia glumae infects rice seedling and maintains bacterial population during vegetative and reproductive growth stages.
Plant Pathol. J. 34:393-402.
Rahman, M. H. and Udin, M. J. 2017. Blast: a threat to cereal crops in Bangladesh. Barisal Univ. J. 4:237-260.
Ramachandran, K., Vijayam, S. I., Ahmad, F. N., Amzah, B. and Zakaria, L. 2021. Characterization and identification of
Burkholderia glumae as the causal pathogen of bacterial panicle blight of rice (
Oryza sativa L.) in Malaysian rice granaries.
J. Gen. Plant Pathol. 87:164-169.
Ranjan, A., Sinha, R., Bala, M., Pareek, A., Singla-Pareek, S. L. and Singh, A. K. 2021. Silicon-mediated abiotic and biotic stress mitigation in plants: underlying mechanisms and potential for stress resilient agriculture.
Plant Physiol. Biochem. 163:15-25.
Rodrigues, FÁ, Jurick, W. M., Datnoff, L. E., Jones, J. B. and Rollins, J. A. 2005. Silicon influences cytological and molecular events in compatible and incompatible rice-
Magnaporthe grisea interactions.
Physiol. Mol. Plant Pathol. 66:144-159.
Sathe, A. P., Kumar, A., Mandlik, R., Raturi, G., Yadav, H., Kumar, N., Shivaraj, S. M., Jaswal, R., Kapoor, R., Gupta, S. K., Sharma, T. R. and Sonah, H. 2021. Role of silicon in elevating resistance against sheath blight and blast diseases in rice (
Oryza sativa L.).
Plant Physiol. Biochem. 166:128-139.
Sayler, R. J., Cartwright, R. D. and Yang, Y. 2006. Genetic characterization and real-time PCR detection of
Burkholderia glumae, a newly emerging bacterial pathogen of rice in the United States.
Plant Dis. 90:603-610.
Schurt, D. A., Cruz, M. F. A., Nasciment, K. J. T., Filippi, M. C. and Rodrigues, F. A. 2014. Silicon potentiates the activities of defense enzymes in leaf sheaths of rice plants infected by
Rhizoctonia solani.
Trop. Plant Pathol. 39:457-463.
Sharma, P., Jha, A. B., Dubey, R. S. and Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.
J. Bot. 2012:217037.
Shasmita Mohapatra, D., Mohapatra, P. K., Naik, S. K. and Mukherjee, A. K. 2019. Priming with salicylic acid induces defense against bacterial blight disease by modulating rice plant photosystem II and antioxidant enzymes activity.
Physiol. Mol. Plant Pathol. 108:101427.
Silva, A. J., Nascimento, C. W. A. and Gouveia-Neto, A. S. 2017. Assessment of cadmium phytotoxicity alleviation by silicon using chlorophyll
a fluorescence.
Photosynthetica 55:648-654.
Singh, D. and Vishunavat, K. 2015. Identification of a seed-borne rice bacterium,
Burkholderia glumae using cultural, morphological and biochemical methods.
J. Appl. Nat. Sci. 7:562-566.
Slomberg, D. L. and Schoenfisch, M. H. 2012. Silica nanoparticle phytotoxicity to
Arabidopsis thaliana.
Environ. Sci. Technol. 46:10247-10254.
Sollins, P., Robertson, G. P. and Uehara, G. 1988. Nutrient mobility in variable-and permanent-charge soils.
Biogeochemistry 6:181-199.
Song, A., Xue, G., Cui, P., Fan, F., Liu, H., Yin, C., Sun, W. and Liang, Y. 2016. The role of silicon in enhancing resistance to bacterial blight of hydroponic- and soil-cultured rice.
Sci. Rep. 6:24640.
Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Prabhu, P., Rajendran, V. and Kannan, N. 2012. Growth and physiological responses of maize (
Zea mays L.) to porous silica nanoparticles in soil.
J. Nanoparticle Res. 14:1294.
Syahri, S., Somantri, R. U. and Sasmita, P. 2018. Detection and control bacteria cause grain rot
Burkholderia glumae on rice.
J. Perlind. Tan. Indones. 23:163-170.
Tripathi, D. K., Singh, S., Singh, V. P., Prasad, S. M., Dubey, N. K. and Chauhan, D. K. 2017. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (
Triticum aestivum) seedlings.
Plant Physiol. Biochem. 110:70-81.
Tripathi, P., Tripathi, R. D., Singh, R. P., Dwivedi, S., Goutam, D., Shri, M., Trivedi, P. K. and Chakrabarty, D. 2013. Silicon mediates arsenic tolerance in rice (
Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system.
Ecol. Eng. 52:96-103.
Vibhuti, V., Shahi, C., Bargali, K. and Bargali, S. S. 2015. Seed germination and seedling growth parameters of rice (
Oryza sativa) varieties as affected by salt and water stress.
Indian J. Agric. Sci. 85:102-108.
Wang, Y. and Li, J. 2005. The plant architecture of rice (
Oryza sativa).
Plant Mol. Biol. 59:75-84.
Younis, A. A., Khattab, H. and Emam, M. M. 2020. Impacts of silicon and silicon nanoparticles on leaf ultrastructure and
TaPIP1 and
TaNIP2 gene expressions in heat stressed wheat seedlings.
Biol. Plant 64:343-352.
Zali, A. Z. M., Ja’afar, Y., Paramisparan, K., Ismail, S. I., Saad, N., Hata, E. M., Ismail, M. R., Yusof, M. T. and Zulperi, D. 2023. First report of
Burkholderia gladioli causing bacterial panicle blight of rice in Malaysia.
Plant Dis. 107:551.
Zhang, P., Wu, X., Guo, Z., Yang, X., Hu, X. and Lynch, I. 2021. Stress response and nutrient homeostasis in lettuce (
Lactuca sativa) exposed to graphene quantum dots are modulated by particle surface functionalization.
Adv. Biol. (Weinh) 5:e2000778.
Zhang, Q., Wang, J., Wang, J., Liu, M., Ma, X., Bai, Y., Chen, Q., Sheng, S. and Wang, F. 2023. Nano-silicon triggers rapid transcriptomic reprogramming and biochemical defenses in
Brassica napus challenged with
Sclerotinia sclerotiorum.
J. Fungi 9:1108.