Abraham, N., Schroeter, K. L., Zhu, Y., Chan, J., Evans, N., Kimber, M. S., Carere, J., Zhou, T. and Seah, S. Y. K. 2022. Structure-function characterization of an aldo-keto reductase involved in detoxification of the mycotoxin, deoxynivalenol.
Sci. Rep. 12:14737.
Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. and Zwart, P. H. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr. D Biol. Crystallogr. 66(Pt 2):213-221.
Ansell, R., Granath, K., Hohmann, S., Thevelein, J. M. and Adler, L. 1997. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation.
EMBO J. 16:2179-2187.
Barski, O. A., Gabbay, K. H. and Bohren, K. M. 1996. The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity.
Biochemistry 35:14276-14280.
Brändén, C.-I. 1991. The TIM barrel: the most frequently occurring folding motif in proteins.
Curr. Opin. Struct. Biol. 1:978-983.
Burton, Z. F. 2018. α/β Proteins. In:
Evolution since coding: cradles, halos, barrels, and wings, eds. by Z. F. Burton, pp. 33-43. Academic Press, London, UK.
Chen, R., Wang, S., Sun, Y., Li, H., Wan, S., Lin, F. and Xu, H. 2023. Comparison of glyphosate-degradation ability of aldo-keto reductase (AKR4) proteins in maize, soybean and rice.
Int. J. Mol. Sci. 24:3421.
Dalziel, K. 1975. Kinetics and mechanism of nicotinamide-nucleotid-linked dehydrogenases. Enzymes 11:1-60.
Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., Thon, M., Kulkarni, R., Xu, J.-R., Pan, H., Read, N. D., Lee, Y.-H., Carbone, I., Brown, D., Oh, Y. Y., Donofrio, N., Jeong, J. S., Soanes, D. M., Djonovic, S., Kolomiets, E., Rehmeyer, C., Li, W., Harding, M., Kim, S., Lebrun, M.-H., Bohnert, H., Coughlan, S., Butler, J., Calvo, S., Ma, L.-J., Nicol, R., Purcell, S., Nusbaum, C., Galagan, J. E. and Birren, B. W. 2005. The genome sequence of the rice blast fungus
Magnaporthe grisea.
Nature 434:980-986.
De Jong, J. C., McCormack, B. J., Smirnoff, N. and Talbot, N. J. 1997. Glycerol generates turgor in rice blast.
Nature 389:244.
De Sousa, S. M., Rosselli, L. K., Kiyota, E., da Silva, J. C., Souza, G. H. M. F.n, Peroni, L. A., Stach-Machado, D. R., Eberlin, M. N., Souza, A. P., Koch, K. E., Arruda, P., Torriani, I. L. and Yunes, J. A. 2009. Structural and kinetic characterization of a maize aldose reductase.
Plant Physiol. Biochem. 47:98-104.
Ehrensberger, A. H. and Wilson, D. K. 2004. Structural and catalytic diversity in the two family 11 aldo-keto reductases.
J. Mol. Biol. 337:661-673.
Emsley, P. and Cowtan, K. 2004. Coot: model-building tools for molecular graphics.
Acta Crystallogr. D Biol. Crystallogr. 60:2126-2132.
Farber, G. K. and Petsko, G. A. 1990. The evolution of α/β barrel enzymes.
Trends Biochem. Sci. 15:228-234.
Fernandez, J. and Orth, K. 2018. Rise of a cereal killer: the biology of
Magnaporthe oryzae biotrophic growth.
Trends Microbiol. 26:582-597.
Foster, A. J., Ryder, L. S., Kershaw, M. J. and Talbot, N. J. 2017. The role of glycerol in the pathogenic lifestyle of the rice blast fungus
Magnaporthe oryzae.
Environ. Microbiol. 19:1008-1016.
Jez, J. M. and Penning, T. M. 2001. The aldo-keto reductase (AKR) superfamily: an update.
Chem. Biol. Interact. 130-132:499-525.
Jiang, W., Wang, S., Wang, Y. and Fang, B. 2016. Key enzymes catalyzing glycerol to 1,3-propanediol.
Biotechnol. Biofuels 9:57.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. and Hassabis, D. 2021. Highly accurate protein structure prediction with AlphaFold.
Nature 596:583-589.
Khurana, S., Powers, D. B., Anderson, S. and Blaber, M. 1998. Crystal structure of 2,5-diketo-D-gluconic acid reductase A complexed with NADPH at 2.1-A resolution. Proc. Natl. Acad. Sci. U. S. A. 5:6768-6773.
Komoto, J., Yamada, T., Watanabe, K. and Takusagawa, F. 2004. Crystal structure of human prostaglandin F synthase (AKR1C3).
Biochemistry 43:2188-2198.
Liu, X., Wang, C., Zhang, L., Yao, Z., Cui, D., Wu, L., Lin, J., Yuan, Y-RA and Wei, D. 2014. Structural and mutational studies on an aldo-keto reductase AKR5C3 from
Gluconobacter oxydans.
Protein Sci. 23:1540-1549.
Ma, H. and Penning, T. M. 1999. Conversion of mammalian 3α-hydroxysteroid dehydrogenase to 20α-hydroxysteroid dehydrogenase using loop chimeras: changing specificity from androgens to progestins.
Proc. Natl. Acad. Sci. U. S. A. 96:11161-11166.
Marquardt, T., Kostrewa, D., Balakrishnan, R., Gasperina, A., Kambach, C., Podjarny, A., Winkler, F. K., Balendiran, G. K. and Li, X.-D. 2005. High-resolution crystal structure of AKR11C1 from
Bacillus halodurans: an NADPH-dependent 4-hydroxy-2,3-
trans-nonenal reductase.
J. Mol. Biol. 354:304-316.
Otwinowski, Z. and Minor, W. 1997. Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 276:307-326.
Pan, L., Yu, Q., Han, H., Mao, L., Nyporko, A., Fan, L., Bai, L. and Powles, S. 2019. Aldo-keto reductase metabolizes glyphosate and confers glyphosate resistance in
Echinochloa colona.
Plant Physiol. 181:1519-1534.
Penning, T. M. 2015. The aldo-keto reductases (AKRs): overview.
Chem. Biol. Interact. 234:236-246.
Pfeifer, M. A. and Khang, C. H. 2018. A nuclear contortionist: the mitotic migration of
Magnaporthe oryzae nuclei during plant infection.
Mycology 9:202-210.
Reddy, B., Mehta, S., Prakash, G., Sheoran, N. and Kumar, A. 2022. Structured framework and genome analysis of
Magnaporthe grisea inciting pearl millet blast disease reveals versatile metabolic pathways, protein families, and virulence factors.
J. Fungi (Basel) 8:614.
Redkar, R. J., Locy, R. D. and Singh, N. K. 1995. Biosynthetic pathways of glycerol accumulation under salt stress in
Aspergillus nidulans.
Exp. Mycol. 19:241-246.
Richter, N., Breicha, K., Hummel, W. and Niefind, K. 2010. The three-dimensional structure of AKR11B4, a glycerol dehydrogenase from
Gluconobacter oxydans, reveals a tryptophan residue as an accelerator of reaction turnover.
J. Mol. Biol. 404:353-362.
Sanli, G. and Blaber, M. 2001. Structural assembly of the active site in an aldo-keto reductase by NADPH cofactor.
J. Mol. Biol. 309:1209-1218.
Schlegel, B. P., Jez, J. M. and Penning, T. M. 1998. Mutagenesis of 3 alpha-hydroxysteroid dehydrogenase reveals a “push-pull” mechanism for proton transfer in aldo-keto reductases.
Biochemistry 37:3538-3548.
Schuurink, R., Busink, R., Hondmann, D. H. A., Witteveen, C. F. B. and Visser, J. 1990. Purification and properties of NADP(+)-dependent glycerol dehydrogenases from
Aspergillus nidulans and
A. niger.
J. Gen. Microbiol. 136:1043-1050.
Sengupta, D., Naik, D. and Reddy, A. R. 2015. Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: a structure-function update.
J. Plant Physiol. 179:40-55.
Simpson, P. J., Tantitadapitak, C., Reed, A. M., Mather, O. C., Bunce, C. M., White, S. A. and Ride, J. P. 2009. Characterization of two novel aldo-keto reductases from Arabidopsis: expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress.
J. Mol. Biol. 392:465-480.
Skamnioti, P. and Gurr, S. J. 2007.
Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence.
Plant Cell 19:2674-2689.
Songsiriritthigul, C., Narawongsanont, R., Tantitadapitak, C., Guan, H. H. and Chen, C. J. 2020. Structure-function study of AKR4C14, an aldo-keto reductase from Thai jasmine rice (
Oryza sativa L. ssp.
indica cv. KDML105).
Acta Crystallogr. D Struct. Biol. 76:472-483.
Thines, E., Weber, R. W. S. and Talbot, N. J. 2000. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by
Magnaporthe grisea.
Plant Cell 12:1703-1718.
Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., Figurnov, M., Cowie, A., Hobbs, N., Kohli, P., Kleywegt, G., Birney, E., Hassabis, D. and Velankar, S. 2022. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models.
Nucleic Acids Res. 50:D439-D444.
Wang, Z.-Y., Jenkinson, J. M., Holcombe, L. J., Soanes, D. M., Veneault-Fourrey, C., Bhambra, G. K. and Talbot, N. J. 2005. The molecular biology of appressorium turgor generation by the rice blast fungus
Magnaporthe grisea.
Biochem. Soc. Trans. 33(Pt 2):384-388.
Wang, Z.-Y., Thornton, C. R., Kershaw, M. J., Debao, L. and Talbot, N. J. 2003. The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus
Magnaporthe grisea.
Mol. Microbiol. 47:1601-1612.
Wilson, R. A. and Talbot, N. J. 2009. Under pressure: investigating the biology of plant infection by
Magnaporthe oryzae.
Nat. Rev. Microbiol. 7:185-195.
Yamamoto, K. and Wilson, D. K. 2013. Identification, characterization, and crystal structure of an aldo-keto reductase (AKR2E4) from the silkworm
Bombyx mori.
Arch. Biochem. Biophys. 538:156-163.
Zhang, H., Zheng, X. and Zhang, Z. 2016. The
Magnaporthe grisea species complex and plant pathogenesis.
Mol. Plant Pathol. 17:796-804.
Zhang, S., Deng, Y. Z. and Zhang, L.-H. 2018. Phytohormones: the chemical language in
Magnaporthe oryzae-rice pathosystem.
Mycology 9:233-237.