Akinnifesi, T. A., Asubiojo, O. I. and Amusan, A. A. 2006. Effects of fungicide residues on the physico-chemical characteristics of soils of a major cocoa-producing area of Nigeria.
Sci. Total Environ. 366:876-879.
Alström, S. 1991. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads.
J. Gen. Appl. Microbiol. 37:495-501.
Balmer, A., Pastor, V., Gamir, J., Flors, V. and Mauch-Mani, B. 2015. The ‘prime-ome’: towards a holistic approach to priming.
Trends Plant Sci. 20:443-452.
Bennett, F. T. 1937. Dollarspot disease of turf and its causal organism
Sclerotinia homoeocarpa n. sp.
Ann. Appl. Biol. 24:236-257.
Berendsen, R. L., Vismans, G., Yu, K., Song, Y., de Jonge, R., Burgman, W. P., Burmølle, M., Herschend, J., Bakker, A. H. M. and Pieterse, C. M. J. 2018. Disease-induced assemblage of a plant-beneficial bacterial consortium.
ISME J. 12:1496-1507.
Bishop, P., Sorochan, J., Ownley, B. H., Samples, T. J., Windham, A. S., Windham, M. T. and Trigiano, R. N. 2008. Resistance of
Sclerotinia homoeocarpa to iprodione, propiconazole, and thiophanate-methyl in Tennessee and northern Mississippi.
Crop Sci. 48:1615-1620.
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., Cope, E. K., Da Silva, R., Diener, C., Dorrestein, P. C., Douglas, G. M., Durall, D. M., Duvallet, C., Edwardson, C. F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J. M., Gibbons, S. M., Gibson, D. L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G. A., Janssen, S., Jarmusch, A. K., Jiang, L., Kaehler, B. D., Kang, K. B., Keefe, C. R., Keim, P., Kelley, S. T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M. G. I., Lee, J., Ley, R., Liu, Y.-X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B. D., McDonald, D., McIver, L. J., Melnik, A. V., Metcalf, J. L., Morgan, S. C., Morton, J. T., Naimey, A. T., Navas-Molina, J. A., Nothias, L. F., Orchanian, S. B., Pearson, T., Peoples, S. L., Petras, D., Preuss, M. L., Pruesse, E., Rasmussen, L. B., Rivers, A., Robeson, M. S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S. J., Spear, J. R., Swafford, A. D., Thompson, L. R., Torres, P. J., Trinh, P., Tripathi, A., Turnbaugh, P. J., Ul-Hasan, S., van der Hooft, J. J. J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K. C., Williamson, C. H. D., Willis, A. D., Xu, Z. Z., Zaneveld, J. R., Zhang, Y., Zhu, Q., Knight, R. and Caporaso, J. G. 2019. Reproducible, interactive, scalable and extensible microbiome data science using Qiime 2.
Nat. Biotechnol. 37:852-857.
Breiman, L. 2001. Random forests. Mach. Learn. 45:5-32.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A. and Holmes, S. P. 2016. DADA2: high-resolution sample inference from Illumina amplicon data.
Nat. Methods 13:581-583.
Carvalhais, L. C., Dennis, P. G., Badri, D. V., Kidd, B. N., Vivanco, J. M. and Schenk, P. M. 2015. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes.
Mol. Plant-Microbe Interact. 28:1049-1058.
Chan, L. H., Lam, S. K., Chen, D., Tang, C., Chen, Q., Roessner, U., Salazar, V. W., Gupta, S., Dias, D. A. and Hu, H.-W. 2024. Cultivar-specific wheat-associated bacterial communities and metabolites in response to nitrogen deficiency.
Plant Soil Online publication.
https://doi.org/10.1007/s11104-024-07048-0.
Cho, D.-H., Ramanan, R., Heo, J., Lee, J., Kim, B.-H., Oh, H.-M. and Kim, H.-S. 2015. Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community.
Bioresour. Technol. 175:578-585.
Cho, G., Jo, G. S., Lee, Y. and Kwak, Y.-S. 2022. Effect of
Scenedesmus sp. CHK0059 on strawberry microbiota community.
J. Microbiol. Biotechnol. 32:862-868.
Cook, R. J. and Baker, K. F. 1983. The nature and practice of biological control of plant pathogens. American Phytopathological Society, St. Paul, MN. pp. 539.
Fudou, R., Iizuka, T. and Yamanaka, S. 2001. Haliangicin, a novel antifungal metabolite produced by a marine
Myxobacterium. 1. Fermentation and biological characteristics.
J. Antibiot. (Tokyo) 54:149-152.
Garrido-Oter, R., Nakano, R. T., Dombrowski, N., Ma, K.-W., McHardy, A. C., Schulze-Lefert, P.; The AgBiome Team 2018. Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia.
Cell Host Microbe 24:155-167.
Geiger, F., Bengtsson, J., Berendse, F., Weisser, W. W., Emmerson, M., Morales, M. B., Ceryngier, P., Liira, J., Tscharntke, T., Winqvist, C., Eggers, S., Bommarco, R., Pärt, T., Bretagnolle, V., Plantegenest, M., Clement, L. W., Dennis, C., Palmer, C., Oñate, J. J., Guerrero, I., Hawro, V., Aavik, T., Thies, C., Flohre, A., Hänke, S., Fischer, C., Goedhart, P. W. and Inchausti, P. 2010. Persistent negative effects of pesticides on biodiversity and biological control potential on european farmland. Basic Appl. Ecol. 11:97-105.
Heil, M. and Baldwin, I. T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept.
Trends Plant Sci. 7:61-67.
Hu, X., Kerckhof, F.-M., Ghesquière, J., Bernaerts, K., Boeckx, P., Clauwaert, P. and Boon, N. 2020. Microbial protein out of thin air: fixation of nitrogen gas by an autotrophic hydrogen-oxidizing bacterial enrichment.
Environ. Sci. Technol. 54:3609-3617.
Jeanthon, C., L'Haridon, S., Cueff, V., Banta, A., Reysenbach, A.-L. and Prieur, D. 2002.
Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus
Thermodesulfobacterium.
Int. J. Syst. Evol. Microbiol. 52:765-772.
Jin, M., Oh, Y.-K., Chang, Y. K. and Choi, M. 2017. Optimum utilization of biochemical components in
Chlorella sp. KR1 via subcritical hydrothermal liquefaction.
ACS Sustain. Chem. Eng. 5:7240-7248.
Jo, Y.-K., Chang, S. W., Boehm, M. and Jung, G. 2008. Rapid development of fungicide resistance by
Sclerotinia homoeocarpa on turfgrass.
Phytopathology 98:1297-1304.
Karasov, T. L., Chae, E., Herman, J. J. and Bergelson, J. 2017. Mechanisms to mitigate the trade-off between growth and defense.
Plant Cell 29:666-680.
Kim, M.-J., Shim, C.-K., Kim, Y.-K., Ko, B.-G., Park, J.-H., Hwang, S.-G. and Kim, B.-H. 2018a. Effect of biostimulator
Chlorella fusca on improving growth and qualities of Chinese chives and spinach in organic farm.
Plant Pathol. J. 34:567-574.
Kim, S. J., Ko, E. J., Hong, J. K. and Jeun, Y. C. 2018b. Ultrastructures of
Colletotrichum orbiculare in cucumber leaves expressing systemic acquired resistance mediated by
Chlorella fusca.
Plant Pathol. J. 34:113-120.
Kloepper, J. W., Tuzun, S. and Kuć, J. A. 1992. Proposed definitions related to induced disease resistance.
Biocontrol Sci. Technol. 2:349-351.
Kong, H. G., Song, G. C. and Ryu, C.-M. 2019. Inheritance of seed and rhizosphere microbial communities through plant-soil feedback and soil memory.
Environ. Microbiol. Rep. 11:479-486.
Kublanovskaya, A. A., Khapchaeva, S. A., Zotov, V. S., Zaytsev, P. A., Lobakova, E. S. and Solovchenko, A. E. 2019. The effect of the microalga
Chlorella vulgaris IPPAS C-1 biomass application on yield, biological activity, and the microbiome of the soil during bean growing.
Moscow Univ. Biol. Sci. Bull. 74:227-234.
Kuć, J. 1982. Induced immunity to plant disease.
BioScience 32:854-860.
Lämke, J. and Bäurle, I. 2017. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants.
Genome Biol. 18:124.
Lebeis, S. L., Paredes, S. H., Lundberg, D. S., Breakfield, N., Gehring, J., McDonald, M., Malfatti, S., del Rio, T. G., Jones, C. D., Tringe, S. G. and Dangl, J. L. 2015. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa.
Science 349:860-864.
Lee, S.-M., Kim, S.-K., Lee, N., Ahn, C.-Y. and Ryu, C.-M. 2020a. D-lactic acid secreted by
Chlorella fusca primes pattern-triggered immunity against
Pseudomonas syringae in
Arabidopsis.
Plant J. 102:761-778.
Lee, S.-M., Lee, B., Shim, C.-K., Chang, Y.-K. and Ryu, C.-M. 2020b. Plant anti-aging: delayed flower and leaf senescence in
Erinus alpinus treated with cell-free
Chlorella cultivation medium.
Plant Signal. Behav. 15:1763005.
Lee, S.-M. and Ryu, C.-M. 2021. Algae as new kids in the beneficial plant microbiome.
Front. Plant Sci. 12:599742.
Lee, Y., Cho, G., Jo, G. S. and Kwak, Y.-S. 2023. Effect of microalgae
Chlorella fusca CHK0059 on the microbiota community in nursery strawberry.
Hortic. Environ. Biotechnol. 64:547-556.
Lee, Y. J., Kim, S. J. and Jeun, Y. C. 2017. Ultra-structural observations of
Colletotrichum orbiculare on cucumber leaves pre-treated with
Chlorella fusca.
Res. Plant Dis. 23:42-48 (in Korean).
Lee, Y. J., Ko, Y. J. and Jeun, Y. C. 2016. Illustration of disease suppression of anthracnose on cucumber leaves by treatment with
Chlorella fusca.
Res. Plant Dis. 22:257-263 (in Korean).
Lee, Y., Lee, H., Cho, G. and Kwak, Y.-S. 2022. Response of Arabidopsis thaliana microbiota community by Scenedesmus sp. CHK0059. J. Agric. Life Sci. 56:101-109.
Li, Z., Ye, X., Liu, M., Xia, C., Zhang, L., Luo, X., Wang, T., Chen, Y., Zhao, Y., Qiao, Y., Huang, Y., Cao, H., Gu, X., Fan, J., Cui, Z. and Zhang, Z. 2019. A novel outer membrane β-1,6-glucanase is deployed in the predation of fungi by myxobacteria.
ISME J. 13:2223-2235.
Li, Z., Zhang, K., Qiu, L., Ding, S., Wang, H., Liu, Z., Zhang, M. and Wei, Z. 2022. Soil microbial co-occurrence patterns under controlled-release urea and fulvic acid applications.
Microorganisms 10:1823.
Liu, L., Pohnert, G. and Wei, D. 2016. Extracellular metabolites from industrial microalgae and their biotechnological potential.
Mar. Drugs 14:191.
Mitkowski, N. A. and Colucci, S. 2006. The identification of a limited number of vegetative compatibility groups within isolates of
Sclerotinia homoeocarpa infecting
Poa spp. and
Agrostis palustris from temperate climates.
J. Phytopathol. 154:500-503.
Ok, C.-H., Popko, J. T. Jr, Campbell-Nelson, K. and Jung, G. 2011.
In vitro assessment of
Sclerotinia homoeocarpa resistance to fungicides and plant growth regulators.
Plant Dis. 95:51-56.
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H. B. A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M. O., Lahti, L., McGlinn, D., Ouellette, M.-H., Cunha, E. R., Smith, T., Stier, A., Ter Braak, C. J. F., Weedon, J. and Borman, T. 2022. vegan: community ecology package. R package version 2.6-4. R Foundation for Statistical Computing, Vienna, Austria.
Orlygsson, J. and Kristjansson, J. K. 2014. The family
Hydrogenophilaceae. In:
The prokaryotes, eds. by E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt and F. Thompson, pp. 859-868. Springer, Berlin, Germany.
Ostrander, J. C., Todd, R. B. and Kennelly, M. M. 2014. Resistance of Kansas
Sclerotinia homoeocarpa isolates to thiophanate-methyl and determination of associated β-tubulin mutation.
Plant Health. Prog. 15:80-84.
Pal, K. K. and Gardener, B. M. 2006. Biological control of plant pathogens.
Plant Health Instr. 2:1117-1142.
Pieterse, C. M., Van Wees, S. C., Hoffland, E., Van Pelt, J. A. and Van Loon, L. C. 1996. Systemic resistance in
Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression.
Plant Cell 8:1225-1237.
Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M. and Bakker, P. A. H. M.n 2014. Induced systemic resistance by beneficial microbes.
Annu. Rev. Phytopathol. 52:347-375.
Popko, J. T. Jr, Sang, H., Lee, J., Yamada, T., Hoshino, Y. and Jung, G. 2018. Resistance of
Sclerotinia homoeocarpa field isolates to succinate dehydrogenase inhibitor fungicides.
Plant Dis. 102:2625-2631.
Prosser, J. I., Head, I. M. and Stein, L. Y. 2014. The family Nitrosomonadaceae. In:
The prokaryotes: Alphaproteobacteria and betaproteobacteria, eds. by E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt and F. Thompson, pp. 901-918. Springer, Berlin, Germany.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. and Glöckner, F. O. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
Nucleic Acids Res. 41:D590-D596.
Rioux, R. A., Stephens, C. M., Koch, P. L., Kabbage, M. and Kerns, J. P. 2021. Identification of a tractable model system and oxalic acid-dependent symptom development of the dollar spot pathogen
Clarireedia jacksonii.
Plant Pathol. 70:722-734.
Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infections in plants.
Virology 14:340-358.
Sapkota, S., Catching, K. E., Raymer, P. L., Martinez-Espinoza, A. D. and Bahri, B. A. 2022. New approaches to an old problem: dollar spot of turfgrass.
Phytopathology 112:469-480.
Song, G. C., Im, H., Jung, J., Lee, S., Jung, M.-Y., Rhee, S.-K. and Ryu, C.-M. 2019. Plant growth-promoting archaea trigger induced systemic resistance in
Arabidopsis thaliana against
Pectobacterium carotovorum and
Pseudomonas syringae.
Environ. Microbiol. 21:940-948.
Sung, K.-D., Lee, J.-S., Shin, C.-S., Park, S.-C. and Choi, M.-J. 1999. CO
2 fixation by
Chlorella sp. KR-1 and its cultural characteristics.
Bioresour. Technol. 68:269-273.
Townsend, R., Millican, M. D., Smith, D., Nangle, E., Hockemeyer, K., Soldat, D. and Koch, P. L. 2021. Dollar spot suppression on creeping bentgrass in response to repeated foliar nitrogen applications.
Plant Dis. 105:276-284.
van Hulten, M., Pelser, M., Van Loon, L. C., Pieterse, C. M. J. and Ton, J. 2006. Costs and benefits of priming for defense in
Arabidopsis.
Proc. Natl. Acad. Sci. U. S. A. 103:5602-5607.
Van Peer, R., Niemann, G. J. and Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of
Fusarium wilt of carnation by
Pseudomonas sp. strain WCS417r.
Phytopathology 81:728-734.
Walsh, B., Ikeda, S. S. and Boland, G. J. 1999. Biology and management of dollar spot (
Sclerotinia homoeocarpa): an important disease of turfgrass.
HortScience 34:13-21.
Wang, R., Chen, D., Khan, R. A. A., Cui, J., Hou, J. and Liu, T. 2021. A novel
Trichoderma asperellum strain DQ-1 promotes tomato growth and induces resistance to gray mold caused by
Botrytis cinerea.
FEMS Microbiol. Lett. 368:fnab140.
Wei, G., Kloepper, J. W. and Tuzun, S. 1991. Induction of systemic resistance of cucumber to
Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria.
Phytopathology 81:1508-1512.
Xia, C., Zhao, Y., Zhang, L., Li, X., Cheng, Y., Wang, D., Xu, C., Qi, M., Wang, J., Guo, X., Ye, X., Huang, Y., Shen, D., Dou, D., Cao, H., Li, Z. and Cui, Z. 2023. Myxobacteria restrain
Phytophthora invasion by scavenging thiamine in soybean rhizosphere via outer membrane vesicle-secreted thiaminase I.
Nat. Commun. 14:5646.
Xiao, R., Man, X., Duan, B., Cai, T., Ge, Z., Li, X. and Vesala, T. 2022. Changes in soil bacterial communities and nitrogen mineralization with understory vegetation in boreal larch forests.
Soil Biol. Biochem. 166:108572.
Yan, F., Ma, J., Peng, M., Xi, C., Chang, S., Yang, Y., Tian, S., Zhou, B. and Liu, T. 2024. Lactic acid induced defense responses in tobacco against
Phytophthora nicotianae.
Sci. Rep. 14:9338.
Yun, J-H, Cho, D-H, Heo, J., Lee, Y. J., Lee, B., Chang, Y. K. and Kim, H.-S. 2019. Evaluation of the potential of
Chlorella sp. HS2, an algal isolate from a tidal rock pool, as an industrial algal crop under a wide range of abiotic conditions.
J. Appl. Phycol. 31:2245-2258.
Yun, J-H, Pierrelée, M., Cho, D.-H., Kim, U., Heo, J., Choi, D.-Y., Lee, Y. J., Lee, B., Kim, H., Habermann, B., Chang, Y. K. and Kim, H.-S. 2021. Transcriptomic analysis of
Chlorella sp. HS2 suggests the overflow of acetyl-CoA and NADPH cofactor induces high lipid accumulation and halotolerance.
Food Energy Secur. 10:e267.
Zimmerli, L., Jakab, G., Métraux, J.-P. and Mauch-Mani, B. 2000. Potentiation of pathogen-specific defense mechanisms in
Arabidopsis by β-aminobutyric acid.
Proc. Natl. Acad. Sci. U. S. A. 97:12920-12925.