Akahori, M., Miyazaki, A., Koinuma, H., Tokuda, R., Iwabuchi, N., Kitazawa, Y., Maejima, K., Namba, S. and Yamaji, Y. 2024. Use of the 23S rRNA gene as a target template in the universal loop-mediated isothermal amplification (LAMP) of genomic DNA from phytoplasmas.
Microbiol. Spectr. 12:e0010624.
Bekele, B., Hodgetts, J., Tomlinson, J., Boonham, N., Nikolić, P., Swarbrick, P. and Dickinson, M. 2011. Use of a real-time LAMP isothermal assay for detecting 16SrII and XII phytoplasmas in fruit and weeds of the Ethiopian Rift Valley.
Plant Pathol. 60:345-355.
Bertaccini, A., Duduk, B., Paltrinieri, S. and Contaldo, N. 2014. Phytoplasmas and phytoplasma diseases: a severe threat to agriculture.
Am. J. Plant Sci. 5:1763-1788.
De Jonghe, K., De Roo, I. and Maes, M. 2017. Fast and sensitive on-site isothermal assay (LAMP) for diagnosis and detection of three fruit tree phytoplasmas.
Eur. J. Plant Pathol. 147:749-759.
Dhama, K., Karthik, K., Chakraborty, S., Tiwari, R., Kapoor, S., Kumar, A. and Thomas, P. 2014. Loop-mediated isothermal amplification of DNA (LAMP): a new diagnostic tool lights the world of diagnosis of animal and human pathogens: a review.
Pak. J. Biol. Sci. 17:151-166.
Dickinson, M. 2015. Loop-mediated isothermal amplification (LAMP) for detection of phytoplasmas in the field.
Methods Mol. Biol. 1302:99-111.
Gundersen, D. E. and Lee, I.-M. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol. Mediterr. 35:144-151.
Hammond, C., Pérez-López, E., Town, J., Vincent, C., Moreau, D. and Dumonceaux, T. 2021. Detection of blueberry stunt phytoplasma in Eastern Canada using
cpn60-based molecular diagnostic assays.
Sci. Rep. 11:22118.
Han, M. S., Noh, E. W. and Yun, J. K. 2001. Differentiation of phytoplasmas infecting Zizyphus jujuba and Paulownia coreana using PCR-RFLP. Plant Pathol. J. 17:189-193.
Han, S. and Cha, B. 2001. Phylogenetic relationship of tree phytoplasmas in Korea. Korean J. Mycoplasmol. 12:38-47.
Han, S. and Cha, B. 2002. Genetic similarity between jujube witches’ broom and mulberry dwarf phytoplasmas transmitted by
Hishimonus sellatus Uhler.
Plant Pathol. J. 18:98-101.
Han, S.-S., Lee, G.-W., Kim, J.-S., Park, J.-H., Lee, S. K. and Seralathan, K.-K. 2021a. Strains related to ‘
Candidatus Phytoplasma
ulmi’-are associated with Chinese Elm yellows in Korea.
J. Plant Pathol. 103:1339-1340.
Han, S.-S., Baek, S.-J., Lee, S.-H., Seo, S.-T. and Seralathan, K.-K. 2015. First report of aster yellows phytoplasma (16SrI-B) associated with witches’ broom disease of
Melia azedarach var.
japonica in Korea.
J. Phytopathol. 163:1055-1058.
Han, S.-S., Lee, G.-W. and Seralathan, K.-K. 2021b. First report of ‘
Candidatus Phytoplasma asteris’ (16SrI-B) causing witches’-broom disease of
Boehmeria pannosa Nakai & Satake in Korea.
J. Plant Pathol. 103:1049-1050.
Hodgetts, J. 2019. Rapid sample preparation and LAMP for phytoplasma detection.
Methods Mol. Biol. 1875:187-201.
Jung, H. Y. 2003. Phylogenetic classification of phytoplasmas that occur in Korea. Ph.D. thesis. The University of Tokyo, Tokyo, Japan. 107.
Jung, H.-Y., Win, N. K. K. and Kim, Y.-H. 2012. Current status of phytoplasmas and their related diseases in Korea.
Plant Pathol. J. 28:239-247.
Kamala-Kannan, S., Han, S.-S., Lee, K.-J., Velmurugan, P., Lee, Y. H., Chae, J.-C., Lee, Y.-S., Lee, J.-Y. and Oh, B.-T. 2011. Association of elm yellows subgroup 16SrV-B phytoplasma with a disease of
Hovenia dulcis.
J. Phytopathol. 159:171-174.
Kim, Y.-H. and Jung, H.-Y. 2007. Candidatus Phytoplasma trifolii associated with witches’ broom of
Lespedeza cyrtobotrya M.
Plant Pathol. J. 23:106-108.
Kogovšek, P., Hodgetts, J., Hall, J., Prezelj, N., Nikolić, P., Mehle, N., Lenarčič, R., Rotter, A., Dickinson, M., Boonham, N., Dermastia, M. and Ravnikar, M. 2015. LAMP assay and rapid sample preparation method for on-site detection of flavescence dorée phytoplasma in grapevine.
Plant Pathol. 64:286-296.
Kumari, S., Nagendran, K., Rai, A. B., Singh, B., Rao, G. P. and Bertaccini, A. 2019. Global status of phytoplasma diseases in vegetable crops.
Front. Microbiol. 10:1349.
Lee, G. W. 2020. Investigation of decline for Elaeocarpus sylvestris var. ellipticus caused by phytoplasma in Korea. M.S. thesis. Jeonbuk National University, Jeonju, Korea. in Korean.
Lee, G.-W. and Han, S.-S. 2023. Molecular detection of phytoplasmas of the 16SrI and 16SrXXXII groups in
Elaeocarpus sylvestris trees with decline disease in Jeju Island, South Korea.
Plant Pathol. J. 39:149-157.
Lee, I.-M., Hammond, R. W., Davis, R. E. and Gundersen, D. E. 1993. Universal amplification and analysis of pathogen 16S rRNA for classification and identification of mycoplasma like organisms.
Phytopathology 83:834-842.
Musetti, R. and Pagliari, L. 2019. Phytoplasmas: methods and protocols. Springer, New York, USA. pp. 362.
Nair, S., Manimekalai, R., Ganga Raj, P. and Hegde, V. 2016. Loop mediated isothermal amplification (LAMP) assay for detection of coconut root wilt disease and arecanut yellow leaf disease phytoplasma.
World J. Microbiol. Biotechnol. 32:108.
Namba, S. 2019. Molecular and biological properties of phytoplasmas.
Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 95:401-418.
Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. 2000. Loop-mediated isothermal amplification of DNA.
Nucleic Acids Res. 28:E63.
Obura, E., Masiga, D., Wachira, F., Gurja, B. and Khan, Z. R. 2011. Detection of phytoplasma by loop-mediated isothermal amplification of DNA (LAMP).
J. Microbiol. Methods 84:312-316.
Siemonsmeier, A., Hadersdorfer, J., Neumüller, M., Schwab, W. and Treutter, D. 2019. A LAMP protocol for the detection of ‘
Candidatus Phytoplasma pyri’, the causal agent of pear decline.
Plant Dis. 103:1397-1404.
Siriwardhana, P. H. A. P.n, Gunawardena, B. W. A. and Millington, S. 2012. Detection of phytoplasma associated with Waligama Coconut Leaf Wilt Disease in Sri Lanka by loop mediated isothermal amplification assay performing alkaline polyethylene glycol based DNA extraction. J. Microbiol. Biotechnol. Res. 2:712-716.
Sugawara, K., Himeno, M., Keima, T., Kitazawa, Y., Maejima, K., Oshima, K. and Namba, S. 2012. Rapid and reliable detection of phytoplasma by loop-mediated isothermal amplification targeting a housekeeping gene.
J. Gen. Plant Pathol. 78:389-397.
Tomlinson, J. A., Boonham, N. and Dickinson, M. 2010. Development and evaluation of a one-hour DNA extraction and loop-mediated isothermal amplification assay for rapid detection of phytoplasmas.
Plant Pathol. 59:465-471.
Tran-Nguyen, L. T. T., Kube, M., Schneider, B., Reinhardt, R. and Gibb, K. S. 2008. Comparative genome analysis of “
Candidatus Phytoplasma australiense” (subgroup tuf-Australia I; rp-A) and “
Ca. Phytoplasma asteris” strains OY-M and AY-WB.
J. Bacteriol. 190:3979-3991.
Wang, S., Wang, S., WS, , Lin, C., Yu, S., YS, , Wang, L., Piao, C., Guo, M. and Guozhong, T. 2017. Loop-mediated isothermal amplification assay for detection of five phytoplasmas belonging to 16SrI group based on target tuf gene. Sci. Silvae Sin. 53:54-63.
Yu, S.-S., Che, H.-Y., Wang, S.-J., Lin, C.-L., Lin, M.-X., Song, W.-W., Tang, Q.-H., Yan, W. and Qin, W.-Q. 2020. Rapid and efficient detection of 16SrI group areca palm yellow leaf phytoplasma in China by loop-mediated isothermal amplification.
Plant Pathol. J. 36:459-467.