Akhter, A., Hage-Ahmed, K., Soja, G. and Steinkellner, S. 2015. Compost and biochar alter mycorrhization, tomato root exudation, and development of
Fusarium oxysporum f. sp.
lycopersici.
Front. Plant Sci. 6:529.
Ali, B., Wang, X., Saleem, M. H., Azeem, M. A., Afridi, M. S., Nadeem, M., Ghazal, M., Batool, T., Qayyum, A., Alatawi, A. and Ali, S. 2022.
Bacillus mycoides PM35 reinforces photosynthetic efficiency, antioxidant defense, expression of stress-responsive genes, and ameliorates the effects of salinity stress in maize.
Life 12:219.
Aly, A. A., El-Mahdy, O. M., Habeb, M. M., Elhakem, A., Asran, A. A., Youssef, M. M., Mohamed, H. I. and Hanafy, R. S. 2022. Pathogenicity of
Bacillus strains to cotton seedlings and their effects on some biochemical components of the infected seedlings.
Plant Pathol. J. 38:90-101.
Baggio, G., Groves, R. A., Chignola, R., Piacenza, E., Presentato, A., Lewis, I. A., Lampis, S., Vallini, G. and Turner, R. J. 2021. Untargeted metabolomics investigation on selenite reduction to elemental selenium by
Bacillus mycoides SeITE01.
Front. Microbiol. 12:711000.
Belgrove, A., Steinberg, C. and Viljoen, A. 2011. Evaluation of nonpathogenic
Fusarium oxysporum and
Pseudomonas fluorescens for Panama disease control.
Plant Dis. 95:951-959.
Booth, C. 1971. The genus Fusarium
. Commonwealth Mycological Institute, Kew, Surrey, UK. pp. 237.
Carbone, I. and Kohn, L. M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes.
Mycologia 91:553-556.
Chai, C. H., Hong, C.-F. and Huang, J.-W. 2022. Identification and characterization of a multifunctional biocontrol agent,
Streptomyces griseorubiginosus LJS06, against cucumber anthracnose.
Front. Microbiol. 13:923276.
Chen, K. L. 2017. Identification for the causal agent of strawberry Fusarial wilt from Taiwan and its biocontrol experiments. M.S. thesis. Department of Plant Pathology, National Chung Hsing University, Taichung City, Taiwan. 67.
Chen, K.-L., Chang, P.-F. and Huang, J.-W. 2017. Physiological and biochemical analyses of Fusarium oxysporum Schl. f. sp. fragariae in Taiwan. J. Plant Med. 59:13-22.
Chen, Y. C., Hsieh, T. J. and Hsieh, W. H. 2005. Development of a selective medium for detecting Fusarium oxysporum f. spgladioli. Plant Pathol. Bull. 14:251-256.
Chikh-Rouhou, H., Gómez-Guillamón, M. L., González, V., Sta-Baba, R. and Garcés-Claver, A. 2021.
Cucumis melo L. germplasm in Tunisia: unexploited sources of resistance to fusarium wilt.
Horticulturae 7:208.
Chuang, T. Y. and Lee, S. J. 1995. Comparison of cultural characters of Fusarium oxysporum f. sp. cubense on differential medium. Plant Pathol. Bull. 4:129-135.
Edel-Hermann, V. and Lecomte, C. 2019. Current status of
Fusarium oxysporum formae speciales and races.
Phytopathology 109:512-530.
Fang, C., Xu, Y. and Ji, Y. 2022. Part-time farming, diseases and pest control delay and its external influence on pesticide use in China’s rice production.
Front. Environ. Sci. 10:896385.
Freeman, S., Zveibil, A., Vintal, H. and Maymon, M. 2002. Isolation of nonpathogenic mutants of
Fusarium oxysporum f. sp.
melonis for biological control of Fusarium wilt in cucurbits.
Phytopathology 92:164-168.
Fu, H.-Z., Marian, M., Enomoto, T., Hieno, A., Ina, H., Suga, H. and Shimizu, M. 2020. Biocontrol of tomato bacterial wilt by foliar spray application of a novel strain of endophytic
Bacillus sp.
Microbes Environ. 35:ME20078.
Gava, C. A. T. and Pinto, J. M. 2016. Biocontrol of melon wilt caused by
Fusarium oxysporum Schlect f. sp.
melonis using seed treatment with
Trichoderma spp. and liquid compost.
Biol. Control 97:13-20.
Geiser, D. M., Jiménez-Gasco, M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T. J., Zhang, N., Kuldau, G. A. and O’Donnell, K. 2004. FUSARIUM-ID v.1.0: a DNA sequence database for identifying
Fusarium.
Eur. J. Plant Pathol. 110:473-479.
Gordon, T. R., Stueven, M., Pastrana, A. M., Henry, P. M., Dennehy, C. M., Kirkpatrick, S. C. and Daugovish, O. 2019. The effect of pH on spore germination, growth, and infection of strawberry roots by
Fusarium oxysporum f. sp.
fragariae, cause of Fusarium wilt of strawberry.
Plant Dis. 103:697-704.
Hong, C. F., Hsieh, H. Y., Chen, C. T. and Huang, H. C. 2013. Development of a semiselective medium for detection of
Nalanthamala psidii, causal agent of wilt of guava.
Plant Dis. 97:1132-1136.
Hsu, C. C., Huang, J. W. and Chen, C. Y. 2013. The cause of rice bakanae disease in Taiwan. Plant Pathol. Bull. 22:279-289.
Huang, J.-S., Peng, Y.-H., Chung, K.-R. and Huang, J.-W. 2018. Suppressive efficacy of volatile compounds produced by
Bacillus mycoides on damping-off pathogens of cabbage seedlings.
J Agric. Sci. 156:795-809.
Huang, M. J. 2010. Identification for the causal agent of melon Fusarium wilt and its essential biological characteristics and screening test of biocontrol agents. M.S. thesis. Department of Plant Pathology, National Chung Hsing University, Taichung City, Taiwan. 51.
Huelsenbeck, J. P. and Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees.
Bioinformatics 17:754-755.
Jacobson, D. J. and Gordon, T. R. 1990. Further investigations of vegetative compatibility within
Fusarium oxysporum f. sp
melonis.
Can. J. Bot. 68:1245-1248.
Jayanti, R. M. and Joko, T. 2020. Plant growth promoting and antagonistic potential of endophytic bacteria isolated from melon in Indonesia.
Plant Pathol. J. 19:200-210.
Kavino, M. and Manoranjitham, S. K. 2018.
In vitro bacterization of banana (
Musa spp.) with native endophytic and rhizospheric bacterial isolates: novel ways to combat Fusarium wilt.
Eur. J. Plant Pathol. 151:371-387.
Khan, M. A., Khan, S. A., Waheed, U., Raheel, M., Khan, Z., Alrefaei, A. F. and Alkhamis, H. H. 2021. Morphological and genetic characterization of
Fusarium oxysporum and its management using weed extracts in cotton.
J. King Saud Univ. Sci. 33:101299.
Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences.
J. Mol. Evol. 16:111-120.
Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms.
Mol. Biol. Evol. 35:1547-1549.
Kurniawan, A. and Chuang, H.-W. 2021. Rhizobacterial
Bacillus mycoides functions in stimulating the antioxidant defense system and multiple phytohormone signaling pathways to regulate plant growth and stress tolerance.
J Appl. Microbiol. 132:1260-1274.
Kurt, S., Baran, B., Sarı, N. and Yetisir, H. 2002. Physiologic races of
Fusarium oxysporum f. sp.
melonis in the southeastern Anatolia region of Turkey and varietal reactions to races of the pathogen.
Phytoparasitica 30:395-402.
Le, K. D., Kim, J., Nguyen, H. T., Yu, N. H., Park, A. R., Lee, C. W. and Kim, J.-C. 2021.
Streptomyces sp. JCK-6131 protects plants against bacterial and fungal diseases via two mechanisms.
Front. Plant Sci. 12:726266.
Lee, S. I. 2015. Analyses of host range and molecular characteristics for the pathogenic Fusarium oxysporum from diseased plants of cruciferous vegetable yellows in Taiwan. M.S. thesis. Department of Plant Pathology, National Chung Hsing University, Taichung City, Taiwan. 58.
Lin, C.-L., Chen, K.-L., Chang, P-FL, Chang, T.-H., Tang, J.-R., Lin, Y.-H., Wang, C.-L. and Huang, J.-W. 2018. Induced resistance by the biocontrol agent against strawberry Fusarium wilt in Taiwan. In: The 10th Australasian Soilborne Diseases Symposium; 26. Adelaide, South Australia, Australia.
Lin, S. R., Deng, T. S., Lin, T. C., Fan, Y. K. and Huang, J. W. 2010a. Identification for Fusarium species producing fumonisin B1 and factors affecting the mycotoxin production. Plant Pathol. Bull. 19:191-200.
Lin, Y.-H., Chen, K.-S., Chang, J.-Y., Wan, Y.-L., Hsu, C.-C., Huang, J.-W. and Chang, P-FL 2010b. Development of the molecular methods for rapid detection and differentiation of Fusarium oxysporum and F. oxysporum f. sp. niveum in Taiwan. New Biotechnol. 27:409-418.
Lin, Y. S., Huang, C. H. and Kuo, M. S. 1996. Occurrence and dissemination of Fusarium wilt of bitter gourd in Taiwan. Plant Pathol. Bull. 5:38-46.
Liu, Y. J., Whelen, S. and Hall, B. D. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit.
Mol. Biol. Evol. 16:1799-1808.
Lombard, L., Sandoval-Denis, M., Lamprecht, S. C. and Crous, P. W. 2019. Epitypification of
Fusarium oxysporum-clearing the taxonomic chaos.
Persoonia 43:1-47.
Luongo, L., Ferrarini, A., Haegi, A., Vitale, S., Polverari, A. and Belisario, A. 2015. Genetic diversity and pathogenicity of Fusarium oxysporum f. sp. melonis races from different areas of Italy. J. Phytopathol. 163:73-83.
Luongo, L., Vitale, S., Haegi, A. and Belisario, A. 2012. Development of SCAR markers and PCR assay for Fusarium oxysporum f. sp. melonis race 2-specific detection. J. Plant Pathol. 94:193-199.
Molinari, S. and Leonetti, P. 2019. Bio-control agents activate plant immune response and prime susceptible tomato against root-knot nematodes.
PLoS ONE 14:e0213230.
Namiki, F., Shimizu, K., Satoh, K., Hirabayashi, T., Nishi, K., Kayamura, T. and Tsuge, T. 2000. Occurrence of
Fusarium oxysporum f. sp.
melonis race 1 in Japan.
J. Gen. Plant Pathol. 66:12-17.
Nei, M. and Kumar, S. 2000. Molecular evolution and phylogenetics. Oxford University Press, Oxford, UK. pp. 348.
O’Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies.
Proc. Natl. Acad. Sci. U. S. A. 95:2044-2049.
O’Donnell, K., Nirenberg, H. I., Aoki, T. and Cigelnik, E. 2000. A multigene phylogeny of the
Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species.
Mycoscience 41:61-78.
O’Donnell, K., Rooney, A. P., Proctor, R. H., Brown, D. W., McCormick, S. P., Ward, T. J., Frandsen, R. J. N., Lysøe, E., Rehner, S. A., Aoki, T., Robert, V. A. R. G.n, Crous, P. W., Groenewald, J. Z., Kang, S. and Geiser, D. M. 2013. Phylogenetic analyses of
RPB1 and
RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria.
Fungal Genet. Biol. 52:20-31.
O’Donnell, K., Sarver, B. A. J., Brandt, M., Chang, D. C., Noble-Wang, J., Park, B. J., Sutton, D. A., Benjamin, L., Lindsley, M., Padhye, A., Geiser, D. M. and Ward, T. J. 2007. Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006.
J. Clin. Microbiol. 45:2235-2248.
Pandit, M. A., Kumar, J., Gulati, S., Bhandari, N., Mehta, P., Katyal, R., Rawat, C. D., Mishra, V. and Kaur, J. 2022. Major biological control strategies for plant pathogens.
Pathogens 11:273.
Park, H., Lee, Y., Balaraju, K., Kim, J. and Jeon, Y. 2024. Characterization and biocontrol efficacy of
Bacillus velezensis GYUN-1190 against apple bitter rot.
Plant Pathol. J. 40:681-695.
Peng, Y.-H., Chou, Y.-J., Liu, Y.-C., Jen, J.-F., Chung, K.-R. and Huang, J.-W. 2017. Inhibition of cucumber
Pythium damping-off pathogen with zoosporicidal biosurfactants produced by
Bacillus mycoides.
J. Plant Dis. Prot. 124:481-491.
Peng, Y. H. and Huang, J. W. 1998. Pathogenicity tests of lettuce Fusarium wilt fungus. Plant Pathol. Bull. 7:121-127.
Perchepied, L. and Pitrat, M. 2004. Polygenic inheritance of partial resistance to
Fusarium oxysporum f. sp.
melonis race 1.2 in melon.
Phytopathology 94:1331-1336.
R Core Team 2024. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Risser, G., Banihashemi, Z. and Davis, D. W. 1976. A proposed nomenclature of
Fusarium oxysporum f. sp.
melonis races and resistance genes in
Cucumis melo.
Phytopathology 66:1105-1106.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. and Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.
Syst. Biol. 61:539-542.
Sachdev, S. and Singh, R. P. 2018. Root colonization: imperative mechanism for efficient plant protection and growth. MOJ Ecol. Environ. Sci. 3:240-242.
Sadeghpour, N., Asadi-Gharneh, H. A., Nasr-Esfahani, M., Khankahdani, H. H. and Golabadi, M. 2023. Assessing genetic diversity and population structure of Iranian melons (
Cucumis melo) collection using primer pair markers in association with resistance to Fusarium wilt.
Funct. Plant Biol. 50:347-362.
Samaras, A., Roumeliotis, E., Ntasiou, P. and Karaoglanidis, G. 2021.
Bacillus subtilis MBI600 promotes growth of tomato plants and induces systemic resistance contributing to the control of soilborne pathogens.
Plants 10:1113.
Schreuder, W., Lamprecht, S. C. and Holz, G. 2000. Race determination and vegetative compatibility grouping of
Fusarium oxysporum f. sp.
melonis from South Africa.
Plant Dis. 84:231-234.
Sebastiani, M. S., Bagnaresi, P., Sestili, S., Biselli, C., Zechini, A., Orrù, L., Cattivelli, L. and Ficcadenti, N. 2017. Transcriptome analysis of the melon:
Fusarium oxysporum f. sp.
melonis race 1.2 pathosystem in susceptible and resistant plants.
Front. Plant Sci. 8:362.
Shin, J.-H., Lee, H.-K., Lee, S.-C. and Han, Y.-K. 2023. Biological control of
Fusarium oxysporum, the causal agent of Fusarium basal rot in onion by
Bacillus spp.
Plant Pathol. J. 39:600-613.
Sun, Q., Zhang, S.-L., Xie, Y.-J., Xu, M.-T., Herrera-Balandrano, D. D., Chen, X., Wang, S.-Y., Shi, X.-C. and Laborda, P. 2022. Identification of new
Fusarium sulawense strains causing soybean pod blight in China and their control using carbendazim, dipicolinic acid and kojic acid.
In. J. Environ. Res. Public Health 19:10531.
Sung, G.-H., Sung, J.-M., Hywel-Jones, N. L. and Spatafora, J. W. 2007. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach.
Mol. Phylogenet. Evol. 44:1204-1223.
Tang, J. R., Chang, P. F. L., Chang, T. H., Lin, Y. H. and Huang, J. W. 2019. The analysis platform for mechanisms on controlling tomato Fusarium wilt with Bacillus mycoides. J. Plant Med. 61:29-38.
Tjamos, S. E., Flemetakis, E., Paplomatas, E. J. and Katinakis, P. 2005. Induction of resistance to
Verticillium dahliae in
Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression.
Mol. Plant-Microbe Interact. 18:555-561.
Wang, C.-L. and Cheng, Y.-H. 2017. Identification and trichothecene genotypes of
Fusarium graminearum species complex from wheat in Taiwan.
Bot. Stud. 58:4.
Wang, P. H. and Lin, Y. S. 1985. Ecology of pea wilt and root rot pathogens in drained paddy field. Plant Prot. Bull. 27:317-324.
White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In:
PCR protocols: a guide to methods applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, Inc, New York, USA.
Woo, J. M., Kim, H. S., Lee, I. K., Byeon, E. J., Chang, W. J. and Lee, Y. S. 2024. Potentiality of beneficial microbe
Bacillus siamensis GP-P8 for the suppression of anthracnose pathogens and pepper plant growth promotion.
Plant Pathol. J. 40:346-357.
Wu, J.-J., Huang, J.-W. and Deng, W.-L. 2020. Phenylacetic acid and methylphenyl acetate from the biocontrol bacterium
Bacillus mycoides BM02 suppress spore germination in
Fusarium oxysporum f. sp
lycopersici.
Front. Microbiol. 11:569263.
Yendyo, S., Ramesh, G. C. and Pandey, B. R. 2017. Evaluation of
Trichoderma spp.,
Pseudomonas fluorescens and
Bacillus subtilis for biological control of Ralstonia wilt of tomato.
F1000Res 6:2028.
Zhao, Q., Dong, C., Yang, X., Mei, X., Ran, W., Shen, Q. and Xu, Y. 2011. Biocontrol of Fusarium wilt disease for
Cucumis melo melon using bio-organic fertilizer.
Appl. Soil Ecol. 47:67-75.
Zhao, Q., Mei, X. and Xu, Y. 2016. Isolation and identification of antifungal compounds produced by
Bacillus Y-IVI for suppressing Fusarium wilt of muskmelon.
Plant Prot. Sci. 52:167-175.
Zuniga, T. L., Zitter, T. A., Gordon, T. R., Schroeder, D. T. and Okamoto, D. 1997. Characterization of pathogenic races of
Fusarium oxysporum f. sp.
melonis causing Fusarium wilt of melon in New York.
Plant Dis. 81:592-596.