Alifano, P., Fani, R., Liò, P., Lazcano, A., Bazzicalupo, M., Carlomagno, M. S. and Bruni, C. B. 1996. Histidine biosynthetic pathway and genes: structure, regulation, and evolution.
Microbiol. Rev. 60:44-69.
Bahar, O., Goffer, T. and Burdman, S. 2009. Type IV pili are required for virulence, twitching motility, and biofilm formation of
Acidovorax avenae subsp
citrulli.
Mol. Plant-Microbe Interact. 22:909-920.
Barbosa, J. A. R. G.n, Sivaraman, J., Li, Y., Larocque, R., Matte, A., Schrag, J. D. and Cygler, M. 2002. Mechanism of action and NAD
+-binding mode revealed by the crystal structure of L-histidinol dehydrogenase.
Proc. Natl. Acad. Sci. U. S. A. 99:1859-1864.
Basler, M., Ho, B. T. and Mekalanos, J. J. 2013. Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions.
Cell 152:884-894.
Burdman, S., Kots, N., Kritzman, G. and Kopelowitz, J. 2005. Molecular, physiological, and host-range characterization of
Acidovorax avenae subsp.
citrulli isolates from watermelon and melon in Israel.
Plant Dis. 89:1339-1347.
Burdman, S. and Walcott, R. 2012.
Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry.
Mol. Plant Pathol. 13:805-815.
Choi, H., Fermin, D. and Nesvizhskii, A. I. 2008. Significance analysis of spectral count data in label-free shotgun proteomics.
Mol. Cell. Proteomics 7:2373-2385.
Dietl, A.-M., Amich, J., Leal, S., Beckmann, N., Binder, U., Beilhack, A., Pearlman, E. and Haas, H. 2016. Histidine biosynthesis plays a crucial role in metal homeostasis and virulence of
Aspergillus fumigatus.
Virulence 7:465-476.
Elias, J. E. and Gygi, S. P. 2007. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry.
Nat. Methods 4:207-214.
Fei, N., Ji, W., Yang, L., Yu, C., Qiao, P., Yan, J., Guan, W., Yang, Y. and Zhao, T. 2022. Hcp of the type VI secretion system (T6SS) in
Acidovorax citrulli group II strain Aac5 has a dual role as a core structural protein and an effector protein in colonization, growth ability, competition, biofilm formation, and ferric iron absorption.
Int. J. Mol. Sci. 23:9632.
Feng, J., Schuenzel, E. L., Li, J. and Schaad, N. W. 2009. Multilocus sequence typing reveals two evolutionary lineages of
Acidovorax avenae subsp
citrulli.
Phytopathology 99:913-920.
Grubmeyer, C. T., Insinga, S., Bhatia, M. and Moazami, N. 1989.
Salmonella Typhimurium histidinol dehydrogenase: complete reaction stereochemistry and active site mapping.
Biochemistry 28:8174-8180.
Heo, L., Cho, Y., Choi, J., Lee, J., Han, Y. and Han, S.-W. 2023a. Proteomic and phenotypic analyses of a putative YggS family pyridoxal phosphate-dependent enzyme in
Acidovorax citrulli.
Plant Pathol. J. 39:235-244.
Heo, L., Han, Y., Cho, Y., Choi, J., Lee, J. and Han, S.-W. 2023b. A putative glucose 6-phosphate isomerase has pleiotropic functions on virulence and other mechanisms in
Acidovorax citrulli.
Front. Plant Sci. 14:1275438.
Johnson, K. L. and Walcott, R. R. 2013. Quorum sensing contributes to seed-to-seedling transmission of Acidovorax citrull on watermelon. J. Phytopathol. 161:562-573.
Khanapur, M., Alvala, M., Prabhakar, M., Kumar, K. S., Edwin, R. K., Sri Saranya, P. S. V. K.n, Patel, R. K., Bulusu, G., Misra, P. and Pal, M. 2017.
Mycobacterium tuberculosis chorismate mutase: a potential target for TB.
Bioorg. Med. Chem. 25:1725-1736.
Kim, M., Lee, J., Heo, L. and Han, S.-W. 2020. Putative bifunctional chorismate mutase/prephenate dehydratase contributes to the virulence of
Acidovorax citrulli.
Front. Plant Sci. 11:569552.
Kim, M., Lee, J., Heo, L., Lee, S. J. and Han, S.-W. 2021. Proteomic and phenotypic analyses of a putative glycerol-3-phosphate dehydrogenase required for virulence in
Acidovorax citrulli.
Plant Pathol. J. 37:36-46.
Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. 2nd and Peterson, K. M. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes.
Gene 166:175-176.
Latin, R. X. and Hopkins, D. L. 1995. Bacterial fruit blotch of watermelon: the hypothetical exam question becomes reality.
Plant Dis. 79:761-765.
Latin, R. X. and Rane, K. K. 1990. Bacterial fruit blotch of watermelon in Indiana.
Plant Dis. 74:331.
Lee, J., Heo, L. and Han, S.-W. 2021. Comparative proteomic analysis for a putative pyridoxal phosphate-dependent aminotransferase required for virulence in
Acidovorax citrulli.
Plant Pathol. J. 37:673-680.
Lee, J., Lee, J., Cho, Y., Choi, J. and Han, S.-W. 2022. A putative 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase is involved in the virulence, carbohydrate metabolism, biofilm formation, twitching halo, and osmotic tolerance in
Acidovorax citrulli.
Front. Plant Sci. 13:1039420.
Li, T., Zhan, Z., Lin, Y., Lin, M., Xie, Q., Chen, Y., He, C., Tao, J. and Li, C. 2019. Biosynthesis of amino acids in
Xanthomonas oryzae pv.
oryzae is essential to its pathogenicity.
Microorganisms 7:693.
Monti, S. M., De Simone, G. and D’Ambrosio, K. 2016. L-histidinol dehydrogenase as a new target for old diseases.
Curr. Top. Med. Chem. 16:2369-2378.
Park, H.-J., Seong, H. J., Sul, W. J., Oh, C.-S. and Han, S.-W. 2017. Complete genome sequence of Acidovorax citrulli strain KACC17005, a causal agent for bacterial fruit blotch on watermelon. Korean J. Microbiol. 53:340-341.
Rahimi-Midani, A. and Choi, T.-J. 2020. Transport of phage in melon plants and inhibition of progression of bacterial fruit blotch.
Viruses 12:477.
Roba, A., Carlier, E., Godessart, P., Naili, C. and De Bolle, X. 2022. Histidine auxotroph mutant is defective for cell separation and allows the identification of crucial factors for cell division in
Brucella abortus.
Mol. Microbiol. 118:145-154.
Ruszkowski, M. and Dauter, Z. 2017. Structures of Medicago truncatula L-histidinol dehydrogenase show rearrangements required for NAD
+ binding and the cofactor positioned to accept a hydride.
Sci. Rep. 7:10476.
Schaad, N. W., Sowell, G. Jr, Goth, R. W., Colwell, R. R. and Webb, R. E. 1978.
Pseudomonas pseudoalcaligenes subsp.
citrulli subsp. nov.
Int. J. Syst. Bacteriol. 28:117-125.
Serapio-Palacios, A., Woodward, S. E., Vogt, S. L., Deng, W., Creus-Cuadros, A., Huus, K. E., Cirstea, M., Gerrie, M., Barcik, W., Yu, H. and Finlay, B. B. 2022. Type VI secretion systems of pathogenic and commensal bacteria mediate niche occupancy in the gut.
Cell Rep. 39:110731.
Su, P., Song, Z., Wu, G., Zhao, Y., Zhang, Y., Wang, B., Qian, G., Fu, Z. Q. and Lin, F. 2018. Insights into the roles of two genes of the histidine biosynthesis operon in pathogenicity of
Xanthomonas oryzae pv
oryzicola.
Phytopathology 108:542-551.
Tatusov, R. L., Galperin, M. Y., Natale, D. A. and Koonin, E. V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution.
Nucleic Acids Res. 28:33-36.
Teng, H. and Grubmeyer, C. 1999. Mutagenesis of histidinol dehydrogenase reveals roles for conserved histidine residues.
Biochemistry 38:7363-7371.
Tian, Y., Zhao, Y., Wu, X., Liu, F., Hu, B. and Walcott, R. R. 2015. The type VI protein secretion system contributes to biofilm formation and seed-to-seedling transmission of
Acidovorax citrulli on melon.
Mol. Plant Pathol. 16:38-47.
Walcott, R. R., Fessehaie, A. and Castro, A. C. 2004. Differences in pathogenicity between two genetically distinct groups of
Acidovorax avenae subsp.
citrulli on cucurbit hosts.
J. Phytopathol. 152:277-285.
Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K. and De Ley, J. 1992. Transfer of several phytopathogenic
Pseudomonas species to
Acidovorax as
Acidovorax avenae subsp.
avenae subsp. nov., comb. nov.,
Acidovorax avenae subsp.
citrulli,
Acidovorax avenae subsp.
cattleyae, and
Acidovorax konjaci.
Int. J. Syst. Bacteriol. 42:107-119.
Yang, Y., Fei, N., Ji, W., Qiao, P., Yang, L., Liu, D., Guan, W. and Zhao, T. 2023.
pilA gene contributes to virulence, motility, biofilm formation, and interspecific competition of bacteria in
Acidovorax citrulli.
Microorganisms 11:1806.
Zhang, X., Zhao, M., Yan, J., Yang, L., Yang, Y., Guan, W., Walcott, R. and Zhao, T. C. 2018. Involvement of
hrpX and
hrpG in the virulence of
Acidovorax citrulli strain Aac5, causal agent of bacterial fruit blotch in cucurbits.
Front. Microbiol. 9:507.
Zivanovic, M. and Walcott, R. R. 2017. Further characterization of genetically distinct groups of
Acidovorax citrulli strains.
Phytopathology 107:29-35.