Agresti, A. 2007. An interdiction to categorical data analysis. 2nd ed. John Wiley & Sons, New York, USA. pp. 38.
Ahmed, W., Zhou, G., Yang, J., Munir, S., Ahmed, A., Liu, Q., Zhao, Z. and Ji, G. 2022.
Bacillus amyloliquefaciens WS-10 as a potential plant growth-promoter and biocontrol agent for bacterial wilt disease of flue-cured tobacco.
Egypt. J. Biol. Pest Control 32:25.
Al-Ani, L. K. T. and Albaayit, S. F. A. 2018. Antagonistic of some Trichoderma against Fusarium oxysporum sp. f. cubense tropical race 4 (FocTR4). Eurasia Proc. Sci. Technol. Eng. Math. 2:35-38.
Angel, L. P. L., Yusof, M. T., Ismail, I. S., Ping, B. T. Y., Mohamed Azni, I. N. A., Kamarudin, N. H. and Sundram, S. 2016. An
in vitro study of the antifungal activity of
Trichoderma virens 7b and a profile of its non-polar antifungal components released against
Ganoderma boninense.
J. Microbiol. 54:732-744.
Anjum, N., Shahid, A. A., Iftikhar, S., Mubeen, M., Ahmad, M. H., Jamil, Y., Rehan, M. K. N., Aziz, A., Iqbal, S. and Abbas, A. 2020. Evaluations of Trichoderma isolates for biological control of Fusarium wilt of chili. Plant Cell Biotechnol. Mol. Biol. 21:42-57.
Asad, S. A., Tabassum, A., Hameed, A., Hassan, F., Afzal, A., Khan, S. A., Ahmed, R. and Shahzad, M. 2015. Determination of lytic enzyme activities of indigenous
Trichoderma isolates from Pakistan.
Braz. J. Microbiol. 46:1053-1064.
Azuddin, N. F., Mohd, M. H., Rosely, N. F. N., Mansor, A. and Zakaria, L. 2024. Extracellular enzymatic activity of endophytic fungi isolated from spines of rattan palm (Calamus castaneus Griff.). Malays. J. Microbiol. 20:7-14.
Bader, A. N., Salerno, G. L., Covacevich, F. and Consolo, V. F. 2020. Native
Trichoderma harzianum strains from Argentina produce indole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (
Solanum lycopersicum L.).
J. King Saud Univ. Sci. 32:867-873.
Bartual, R., Lacasa, A., Marsal, J. I. and Tello, J. C. 1993. Epistasis in the resistance of pepper to phytophthora stem blight (
Phytophthora capsici L.) and its significance in the prediction of double cross performances.
Euphytica 72:149-152.
Benítez, T., Rincón, A. M., Limón, M. C. and Codón, A. C. 2004. Biocontrol mechanisms of
Trichoderma strains.
Int. Microbiol. 7:249-260.
Boamah, S., Zhang, S., Xu, B., Li, T. and Calderón-Urrea, A. 2021.
Trichoderma longibrachiatum (TG1) enhances wheat seedlings tolerance to salt stress and resistance to
Fusarium pseudograminearum.
Front. Plant Sci. 12:741231.
Carrasco, F., Miranda, V., Sede, S. M., Bustos, S., González, V., Otero, L. and Fracchia, S. 2024. Screening for native
Trichoderma strains as potential biocontrollers of the olive pathogen
Verticillium dahliae.
Arid Land Res. Manag. 38:122-143.
Chávez-Avilés, M. N., García-Álvarez, M., Ávila-Oviedo, J. L., Hernández-Hernández, I., Bautista-Ortega, P. I. and Macías-Rodríguez, L. I. 2024. Volatile organic compounds produced by
Trichoderma asperellum with antifungal properties against
Colletotrichum acutatum.
Microorganisms 12:2007.
Choi, G. J., Jang, K. S., Choi, Y. H., Yu, J. H. and Kim, J.-C. 2010. Antifungal activity of lower alkyl fatty acid esters against powdery mildews.
Plant Pathol. J. 26:360-366.
Contreras-Cornejo, H. A., Macías-Rodríguez, L., Cortes-Penagos, C. and López-Bucio, J. 2009.
Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis.
Plant Physiol. 149:1579-1592.
Crouch, J. A. and Beirn, L. A. 2009. Anthracnose of cereals and grasses. Fungal Divers. 39:19-44.
Da Silva, L. R., de Barros Rodrigues, L. L., Botelho, A. S., de Castro, B. S., Muniz, P. H. P. C.n, Moraes, M. C. B. and de Mello, S. C. M. 2023. Colony age of
Trichoderma azevedoi alters the profile of volatile organic compounds and ability to suppress
Sclerotinia sclerotiorum in bean plants.
Plant Pathol. J. 39:39-51.
Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology.
Mol. Plant. Pathol. 13:414-430.
Debode, J., De Tender, C., Cremelie, P., Lee, A. S., Kyndt, T., Muylle, H., De Swaef, T. and Vandecasteele, B. 2018.
Trichoderma-inoculated miscanthus straw can replace peat in strawberry cultivation, with beneficial effects on disease control.
Front. Plant Sci. 9:213.
Doilom, M., Guo, J.-W., Phookamsak, R., Mortimer, P. E., Karunarathna, S. C., Dong, W., Liao, C.-F., Yan, K., Pem, D., Suwannarach, N., Promputtha, I., Lumyong, S. and Xu, J.-C. 2020. Screening of phosphate-solubilizing fungi from air and soil in Yunnan, China: four novel species in
Aspergillus,
Gongronella,
Penicillium, and
Talaromyces.
Front. Microbiol. 11:585215.
Dowling, M., Peres, N., Villani, S. and Schnabel, G. 2020. Managing
Colletotrichum on fruit crops: a “complex” challenge.
Plant Dis. 104:2301-2316.
El_Komy, M. H., Saleh, A. A., Eranthodi, A. and Molan, Y. Y. 2015. Characterization of novel
Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt.
Plant Pathol. J. 31:50-60.
Gabrekiristos, E., Demiyo, T., Teshome, D. and Ayana, G. 2020. Hot pepper fusarium wilt (
Fusarium oxysporum f. sp.
capsici): epidemics, characteristic features and management options.
J. Agric. Sci. 12:347-360.
Goh, J., Nam, B., Lee, J. S., Mun, H. Y., Oh, Y., Lee, H. B., Chung, N. and Choi, Y.-J. 2018. First report of six Trichoderma species isolated from freshwater environment in Korea. Korean J. Mycol. 46:213-225.
Guo, Z., Luo, C.-X., Wu, H.-J., Peng, B., Kang, B.-S., Liu, L.-M., Zhang, M. and Gu, Q.-S. 2022.
Colletotrichum species associated with anthracnose disease of watermelon (
Citrullus lanatus) in China.
J. Fungi 8:790.
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. and Lorito, M. 2004.
Trichoderma species: opportunistic, avirulent plant symbionts.
Nat. Rev. Microbiol. 2:43-56.
Heo, Y., Lee, Y., Balaraju, K. and Jeon, Y. 2024. Characterization and evaluation of
Bacillus subtilis GYUN-2311 as a biocontrol agent against
Colletotrichum spp. on apple and hot pepper in Korea.
Front. Microbiol. 14:1322641.
Hernandez Castillo, F. D., Berlanga Padilla, A. M., Gallegos Morales, G., Cepeda Siller, M., Rodriguez Herrera, R., Aguilar Gonzales, C. N. and Castillo Reyes, F. 2011. In vitro antagonist action of Trichoderma strains against Sclerotinia sclerotiorum and Sclerotium cepivorum. Am. J. Agric. Biol. Sci. 6:410-417.
Intana, W., Kheawleng, S. and Sunpapao, A. 2021.
Trichoderma asperellum T76-14 released volatile organic compounds against postharvest fruit rot in muskmelons (
Cucumis melo) caused by
Fusarium incarnatum.
J. Fungi 7:46.
Jaklitsch, W. M. 2009. European species of Hypocrea Part I. The green-spored species.
Stud. Mycol. 63:1-91.
Joo, J. H. and Hussein, K. A. 2022. Biological control and plant growth promotion properties of volatile organic compound-producing antagonistic
Trichoderma spp.
Front. Plant Sci. 13:897668.
Kamoun, S., Furzer, O., Jones, J. D. G., Judelson, H. S., Ali, G. S., Dalio, R. J. D., Roy, S. G., Schena, L., Zambounis, A., Panabières, F., Cahill, D., Ruocco, M., Figueiredo, A., Chen, X.-R., Hulvey, J., Stam, R., Lamour, K., Gijzen, M., Tyler, B. M., Grünwald, N. J., Mukhtar, M. S., Tomé, D. F. A., Tör, M., Van Den Ackerveken, G., McDowell, J., Daayf, F., Fry, W. E., Lindqvist-Kreuze, H., Meijer, H. J. G., Petre, B., Ristaino, J., Yoshida, K., Birch, P. R. J. and Govers, F. 2015. The Top 10 oomycete pathogens in molecular plant pathology.
Mol. Plant. Pathol. 16:413-434.
Khare, E. and Yadav, A. 2017. The role of microbial enzyme systems in plant growth promotion.
Clim. Change Environ. Sustain. 5:122-145.
Kim, H., Lee, Y., Hwang, Y.-J., Lee, M.-H., Balaraju, K. and Jeon, Y. 2023a. Identification and characterization of
Brevibacillus halotolerans B-4359: a potential antagonistic bacterium against red pepper anthracnose in Korea.
Front. Microbiol. 14:1200023.
Kim, J.-Y. and Kim, B.-S. 2020. Plant growth promotion and biocontrol potential of various phytopathogenic fungi using gut microbes of
Allomyrina dichotoma larva.
Res. Plant Dis. 26:210-221 (in Korean).
Kim, S. H., Lee, Y., Balaraju, K. and Jeon, Y. 2023b. Evaluation of
Trichoderma atroviride and
Trichoderma longibrachiatum as biocontrol agents in controlling red pepper anthracnose in Korea.
Front. Plant Sci. 14:1201875.
Kurchenko, I., Patyka, V., Kalinichenko, A. and Kopylov, Y. 2023. The genus
Trichoderma as biocontrol agent of plant pathogens. In:
The chemical dialogue between plants beneficial microorganisms, eds. by V. Sharma, R. Salwan, E. Moliszewska, D. Ruano-Rosa and M. Jedryczka, pp. 153-165. Academic Press, London, UK.
Li, N., Alfiky, A., Wang, W., Islam, M., Nourollahi, K., Liu, X. and Kang, S. 2018. Volatile compound-mediated recognition and inhibition between
Trichoderma biocontrol agents and
Fusarium oxysporum.
Front. Microbiol. 9:2614.
Liu, Z., Xu, N., Pang, Q., Khan, R. A. A., Xu, Q., Wu, C. and Liu, T. 2023. A salt-tolerant strain of
Trichoderma longibrachiatum HL167 is effective in alleviating salt stress, promoting plant growth, and managing fusarium wilt disease in cowpea.
J. Fungi 9:304.
López-López, M. E., Del-Toro-Sánchez, C. L., Gutiérrez-Lomelí, M., Ochoa-Ascencio, S., Aguilar-López, J. A., Robles-García, M. A., Plascencia-Jatomea, M., Bernal-Mercado, A. T., Martínez-Cruz, O., Ávila-Novoa, M. G., González-Gómez, J. P. and Guerrero-Medina, P. J. 2022. Isolation and characterization of
Trichoderma spp. for antagonistic activity against avocado (
Persea americana Mill) fruit pathogens.
Horticulturae 8:714.
Manova, V., Stoyanova, Z., Rodeva, R., Boycheva, I., Korpelainen, H., Vesterinen, E., Wirta, H. and Bonchev, G. 2022. Morphological, pathological and genetic diversity of the
Colletotrichum species, pathogenic on Solanaceous vegetable crops in Bulgaria.
J. Fungi 8:1123.
Mathlouthi, N., Saulnier, L., Quemener, B. and Larbier, M. 2002. Xylanase, β-glucanase, and other side enzymatic activities have greater effects on the viscosity of several feedstuffs than xylanase and β-glucanase used alone or in combination.
J. Agric. Food Chem. 50:5121-5127.
Mendoza-Mendoza, A., Zaid, R., Lawry, R., Hermosa, R., Monte, E., Horwitz, B. A. and Mukherjee, P. K. 2018. Molecular dialogues between
Trichoderma and roots: role of the fungal secretome.
Fungal Biol. Rev. 32:62-85.
Mun, H. Y., Oh, Y. and Goh, J. 2023. Evaluation of extracellular enzyme activity of fungi from freshwater environment in South Korea. Korean J. Mycol. 51:265-276.
Naglot, A., Goswami, S., Rahman, I., Shrimali, D. D., Yadav, K. K., Gupta, V. K., Rabha, A. J., Gogoi, H. K. and Veer, V. 2015. Antagonistic potential of native
Trichoderma viride strain against potent tea fungal pathogens in North East India.
Plant Pathol. J. 31:278-289.
Nieto-Jacobo, M. F., Steyaert, J. M., Salazar-Badillo, F. B., Nguyen, D. V., Rostás, M., Braithwaite, M., De Souza, J. T., Jimenez-Bremont, J. F., Ohkura, M., Stewart, A. and Mendoza-Mendoza, A. 2017. Environmental growth conditions of
Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion.
Front. Plant Sci. 8:102.
Nofal, A. M., El-Rahman, M. A., Abdelghany, T. M. and Abd El-Mongy, M. 2021. Mycoparasitic nature of Egyptian
Trichoderma isolates and their impact on suppression Fusarium wilt of tomato.
Egypt. J. Biol. Pest Control 31:103.
O’Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies.
Proc. Natl. Acad. Sci. U. S. A. 95:2044-2049.
Okungbowa, F. I. and Shittu, H. O. 2012. Fusarium wilts: an overview. Environ. Res. J. 6:83-102.
Osman, Y., Gebreil, A., Mowafy, A. M., Anan, T. I. and Hamed, S. M. 2019. Characterization of
Aspergillus niger siderophore that mediates bioleaching of rare earth elements from phosphorites.
World. J. Microbiol. Biotechnol. 35:93.
Oszust, K., Cybulska, J. and Frąc, M. 2020. How do
Trichoderma genus fungi win a nutritional competition battle against soft fruit pathogens? A report on niche overlap nutritional potentiates.
Int. J. Mol. Sci. 21:4235.
Park, M. S., Seo, G. S., Lee, K. H., Bae, K. S. and Yu, S. H. 2005. Morphological and cultural characteristics of
Trichoderma spp. associated with green mold of oyster mushroom in Korea.
Plant Pathol. J. 21:221-228.
Phoka, N., Suwannarach, N., Lumyong, S., Ito, S.-I., Matsui, K., Arikit, S. and Sunpapao, A. 2020. Role of volatiles from the endophytic fungus
Trichoderma asperelloides PSU-P1 in biocontrol potential and in promoting the plant growth of
Arabidopsis thaliana.
J. Fungi 6:341.
Rafanomezantsoa, P., Gharbi, S., Karkachi, N. and Kihal, M. 2023. Optimization of amylase production by the biological control agent
Bacillus halotolerans RFP74 using response surface methodology.
J. Genet. Eng. Biotechnol. 21:63.
Rahman, M. A., Begum, M. F. and Alam, M. F. 2009. Screening of
Trichoderma isolates as a biological control agent against
Ceratocystis paradoxa causing pineapple disease of sugarcane.
Mycobiology 37:277-285.
Rajani, P., Rajasekaran, C., Vasanthakumari, M. M., Olsson, S. B., Ravikanth, G. and Shaanker, R. U. 2021. Inhibition of plant pathogenic fungi by endophytic
Trichoderma spp. through mycoparasitism and volatile organic compounds.
Microbiol. Res. 242:126595.
Ruangwong, O.-U., Pornsuriya, C., Pitija, K. and Sunpapao, A. 2021. Biocontrol mechanisms of
Trichoderma koningiopsis PSU3-2 against postharvest anthracnose of chili pepper.
J. Fungi 7:276.
Saltos, L. A., Monteros-Altamirano, Á, Reis, A. and Garcés-Fiallos, F. R. 2022.
Phytophthora capsici: the diseases it causes and management strategies to produce healthier vegetable crops.
Hortic. Bras. 40:5-17.
Santos, M., Diánez, F., Sánchez-Montesinos, B., Huertas, V., Moreno-Gavira, A., Esteban García, B., Garrido-Cárdenas, J. A. and Gea, F. J. 2023. Biocontrol of diseases caused by
Phytophthora capsici and
P. parasitica in pepper plants.
J. Fungi 9:360.
Schwyn, B. and Neilands, J. 1987. Universal chemical assay for the detection and determination of siderophores.
Anal. Biochem. 160:47-56.
Simon, C. and Sivasithaparam, K. 1988. Interaction among
Gaeumannomyces graminis var.
tritici,
Trichoderma koningii and soil bacteria.
Can. J. Microbiol. 34:871-876.
Sundh, I. and Goettel, M. S. 2013. Regulating biocontrol agents: a historical perspective and a critical examination comparing microbial and macrobial agents.
BioControl 58:575-593.
Than, P. P., Prihastuti, H., Phoulivong, S., Taylor, P. W. J. and Hyde, K. D. 2008. Chilli anthracnose disease caused by
Colletotrichum species.
J. Zhejiang Univ. Sci. B 9:764-778.
Tomah, A. A., Abd Alamer, I. S., Li, B. and Zhang, J.-Z. 2020. A new species of
Trichoderma and gliotoxin role: a new observation in enhancing biocontrol potential of
T. virens against
Phytophthora capsici on chili pepper.
Biol. Control 145:104261.
Tyśkiewicz, R., Nowak, A., Ozimek, E. and Jaroszuk-Ściseł, J. 2022.
Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth.
Int. J. Mol. Sci. 23:2329.
White, T. J., Bruns, T. D., Lee, S. B. and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In:
PCR protocols: a guide to methods and applications
, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, New York, USA.
Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G. and Lorito, M. 2014.
Trichoderma-based products and their widespread use in agriculture.
Open Mycol. J. 8:71-126.
Wyckhuys, K. A. G., Gu, B., Fekih, I. B., Finger, R., Kenis, M., Lu, Y., Subramanian, S., Tang, F. H. M., Weber, D. C., Zhang, W. and Hadi, B. A. R. 2024. Restoring functional integrity of the global production ecosystem through biological control.
J. Environ. Manage. 370:122446.
Yao, X., Guo, H., Zhang, K., Zhao, M., Ruan, J. and Chen, J. 2023.
Trichoderma and its role in biological control of plant fungal and nematode disease.
Front. Microbiol. 14:1160551.
You, J., Li, G., Li, C., Zhu, L., Yang, H., Song, R. and Gu, W. 2022. Biological control and plant growth promotion by volatile organic compounds of
Trichoderma koningiopsis T-51.
J. Fungi 8:131.
Zhang, H., Kong, N., Liu, B., Yang, Y., Li, C., Qi, J., Ma, Y., Ji, S. and Liu, Z. 2022. Biocontrol potential of
Trichoderma harzianum CGMCC20739 (Tha739) against postharvest bitter rot of apples.
Microbiol. Res. 265:127182.
Zhang, S., Gan, Y. and Xu, B. 2015. Biocontrol potential of a native species of
Trichoderma longibrachiatum against Meloidogyne incognita.
Appl. Soil Ecol. 94:21-29.
Zhang, S., Gan, Y. and Xu, B. 2019. Mechanisms of the IAA and ACC-deaminase producing strain of
Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress.
BMC Plant Biol. 19:22.
Zhang, Y., Chen, F.-S., Wu, X.-Q., Luan, F.-G., Zhang, L.-P., Fang, X.-M., Wan, S.-Z., Hu, X.-F. and Ye, J.-R. 2018. Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments.
PLoS ONE 13:e0199625.
Zin, N. A. and Badaluddin, N. A. 2020. Biological functions of
Trichoderma spp. for agriculture applications.
Ann. Agric. Sci. 65:168-178.