Almenar, E, Valle, VD, Catala, R and Gavara, R 2007. Active package for wild strawberry fruit (Fragaria vesca L.).
J Agric Food Chem. 55:2240-2245.
Archibold, DD, Hamilton-Kemp, TR, Barth, MM and Langlois, BE 1997. Identifying natural volatile compounds that control gray mold (Botrytis cinerea) during postharvest storage of strawberry, blackberry, and grape.
J Agric Food Chem. 45:4032-4037.
Arrebola, E, Sivakumar, D and Korsten, L 2010. Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus.
Biol Control. 53:122-128.
Baehler, E, de Werra, P, Wick, LY, Péchy-Tarr, M, Mathys, S, Maurhofer, M and Keel, C 2006. Two novel Mvat-like global regulators control exoproduct formation and biocontrol activity in root-associated Pseudomonas fluorescens CHA0.
Mol Plant-Microbe Interact. 19:313-329.
Barnard, M, Padgitt, M and Uri, ND 1997. Pesticide use and its measurement. Int Pest Control. 39:161-164.
Besson, F, Peypoux, F, Michel, G and Delcambe, L 1978. Identification of antibiotics of iturin group in various strains of Bacillus subtilis.
J Antibiot (Tokyo). 31:284-288.
Cai, X-C, Liu, C-H, Wang, B-T and Xue, Y-R 2017. Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease.
Microbiol Res. 196:89-94.
Cazorla, FM, Dukett, SB, Derström, ET, Noreen, S, Odijk, R, Lugtenberg, BJJ, Thomas-Oates, JE and Bloemberg, GV 2006. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl-5-propyl resorcinol.
Mol Plant-Microbe Interact. 19:418-428.
Cazorla, FM, Romero, D, Pérez-Garcia, A, Lugtenberg, BJ, Vicente, A and Bloemberg, G 2007. Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity.
J Appl Microbiol. 103:1950-1959.
Chun, JS and Bae, KS 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences.
Antonie Van Leeuwenhoek. 78:123-127.
Compant, S, Duffy, B, Nowak, J, Clément, C and Barka, EA 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects.
Appl Environ Microbiol. 71:4951-4959.
DeMilo, AB, Lee, CJ, Moreno, DS and Martinez, AJ 1996. Identification of volatiles derived from Citrobacter freundii fermentation of a trypticase soy broth.
J Agric Food Chem. 44:607-612.
Farag, MA, Ryu, C-M, Sumner, LW and Pare, PW 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants.
Phytochemistry. 67:2262-2268.
Felsenstein, J 1985. Confidence limits on phylogenies: an approach using the bootstrap.
Evolution. 39:783-791.
Fernando, WGD, Ramarathnam, R, Krishnamoorthy, AS and Savchuk, SC 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol.
Soil Biol Biochem. 37:955-964.
Fletcher, J, Bender, C, Budowle, B, Cobb, WT, Gold, SE, Ishimaru, CA, Luster, D, Melcher, U, Murch, R, Scherm, H, Seem, RC, Sherwood, JL, Sobral, BW and Tolin, SA 2006. Plant pathogen forensics: capabilities, needs, and recommendations.
Microbiol Mol Biol Rev. 70:450-471.
Fogliano, V, Ballio, A, Gallo, M, Woo, S, Scala, F and Lorito, M 2002. Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control.
Mol Plant-Microbe Interact. 15:323-333.
Gao, Z, Zhang, B, Liu, H, Han, J and Zhang, Y 2017. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea.
Biol Control. 105:27-39.
Han, JS, Cheng, JH, Yoon, TM, Song, J, Rajkarnikar, A, Kim, WG, Yoo, ID, Yang, YY and Suh, JW 2005. Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua.
J Appl Microbiol. 99:213-221.
Hossain, MT, Khan, A, Chung, EJ, Rashid, MHO and Chung, YR 2016. Biological control of rice bakanae by an endophytic Bacillus oryzicola YC7007.
Plant Pathol J. 32:228-241.
Huang, H, Huang, JW, Saidon, G and Erickson, R 1997. Effect of allyl alcohol and fermented agricultural wastes on carpogenic germination of sclerotia of Sclerotinia sclerotiorum and colonization by Trichoderma spp.
Can J Plant Pathol. 9:43-46.
Isman, MB 2000. Plant essential oils for pest and disease management.
Crop Prot. 19:603-608.
Kim, J-C, Choi, GJ, Lee, S-W, Kim, J-S, Chung, KY and Cho, KY 2004. Screening extracts of Achyranthes japonica and Rumex crispus for activity against various plant pathogenic fungi and control of powdery mildew.
Pest Manag Sci. 60:803-808.
Kim, J-C, Choi, GJ, Park, J-H, Kim, HT and Cho, KY 2001. Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica.
Pest Manag Sci. 57:554-559.
Kim, JS, Lee, J, Lee, CH, Woo, SY, Kang, H, Seo, SG and Kim, SH 2015. Activation of pathogenesis-related genes by the rhizobacterium, Bacillus sp. JS, which induces systemic resistance in tobacco plants.
Plant Pathol J. 31:195-201.
Kimura, M 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.
J Mol Evol. 16:111-120.
Kordali, S, Cakir, A, Ozer, H, Cakmakci, R, Kesdek, M and Mete, E 2008. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene.
Bioresour Technol. 99:8788-8795.
Kulimushi, PZ, Arias, AA, Franzil, L, Steels, A and Ongena, M 2017. Stimulation of fengycin-type antifungal lipopeptides in Bacillus amyloliquefaciens in the presence of the maize fungal pathogen Rhizomucor variabilis.
Front Microbiol. 8:850
Liu, CH, Chen, X, Liu, TT, Lian, B, Gu, Y, Caer, V, Xue, YR and Wang, BT 2007. Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro and identification of its antifungal components.
Appl Microbiol Biotechnol. 76:459-466.
Loeffler, W, Tschen, J, Vanittanakom, N, Kugler, M, Knorpp, E, Hsieh, TF and Wu, TG 1986. Antifungal effects of bacilysin and fengymycin from Bacillus subtilis F-29-3: a comparison with activities of other Bacillus antibiotics.
J Phytopathol. 115:204-213.
Mhammedi, A, Peypoux, F, Besson, F and Michel, G 1982. Bacillomycin F, a new antibiotic of iturin group: isolation and characterization.
J Antibiot (Tokyo). 35:306-311.
Misra, G and Pavlostathis, SG 1997. Biodegradation kinetics of monoterpenes in liquid and soil-slurry systems.
Appl Microbiol Biotechnol. 47:572-577.
Moyne, AL, Shelby, R, Cleveland, TE and Tuzun, S 2001. Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus.
J Appl Microbiol. 90:622-629.
Nam, HS, Yang, H-J, Oh, BJ, Anderson, AJ and Kim, YC 2016. Biological control potential of Bacillus amyloliquefaciens KB3 isolated from the feces of Allomyrina dichotoma larvae.
Plant Pathol J. 32:273-280.
Nam, MH, Park, MS, Kim, HG and Yoo, SJ 2009. Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation.
J Mcirobiol Biotechnol. 19:520-524.
Ongena, M and Jacques, P 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol.
Trends Microbiol. 16:115-125.
Palazzini, JM, Dunlap, CA, Bowman, MJ and Chulze, SN 2016. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: genome sequencing and secondary metabolite cluster profiles.
Microbiol Res. 192:30-36.
Park, MS, Jung, SR, Lee, MS, Kim, KO, Do, JO, Lee, KH, Kim, SB and Bae, KS 2005. Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis.
J Microbiol. 43:219-227.
Peypoux, F, Bonmatin, JM and Wallach, J 1999. Recent trends in the biochemistry of surfactin.
Appl Microbiol Biotechnol. 51:553-563.
Qian, S, Lu, H, Sun, J, Zhang, C, Zhao, H, Lu, F, Bie, X and Lu, Z 2016. Antifungal activity mode of Aspergillus ochraceus by bacillomycin D and its inhibition of ochratoxin A (OTA) production in food samples.
Food Control. 60:281-288.
Razafindralambo, H, Popineau, Y, Deleu, M, Hbid, C, Jacques, P, Thonart, P and Paquot, M 1998. Foaming properties of lipopeptides produced by Bacillus subtilis: effect of lipid and peptide structural attributes.
J Agric Food Chem. 46:911-916.
Robinson, PM, McKee, ND, Thompson, LAA, Harper, DB and Hamilton, JTG 1989. Autoinhibition of germination and growth in Geotrichum candidum.
Mycol Res. 93:214-222.
Ruiz-Garcia, C, Bejar, V, Martinex-Checa, F, Llamas, I and Quesada, E 2005. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain.
Int J Syst Evol Microbiol. 55:191-195.
Ryu, CM, Farag, MA, Hu, CH, Reddy, MS, Wei, HX, Pare, PW and Kloepper, JW 2003. Bacterial volatiles promote growth in Arabidopsis.
Proc Natl Acad Sci USA. 100:4927-4932.
Schneider, J, Taraz, K, Budzikiewicz, H, Deleu, M, Thonart, P and Jacques, P 1999. The structure of two fengycins from Bacillus subtilis S499.
Z Naturforsch C. 54:859-865.
Sharifi, TA and Ramezani, M 2003. Biological control of Fusarium oxysporum, the causal agent of onion wilt by antagonistic bacteria. Commun Agric Appl Biol Sci. 68:543-547.
Shoda, M 2000. Bacterial control of plant disease.
J Biosci Bioeng. 89:515-521.
Son, SH, Khan, Z, Kim, SG and Kim, YH 2009. Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus.
J Appl Microbiol. 107:524-532.
Stein, T 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions.
Mol Microbiol. 56:845-857.
Vanittanakom, N, Loeffler, W, Koch, U and Jung, G 1986. Fengycin--a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3.
J Antibiot (Tokyo). 39:888-901.
Williams, BH, Hathout, Y and Fenselau, C 2002. Structural characterization of lipopeptide biomarkers isolated from Bacillus globigii.
J Mass Spectrom. 37:259-264.
Yoon, M-Y, Choi, GJ, Choi, YH, Jang, KS, Park, MS, Cha, B and Kim, J-C 2010. Effect of polyacetylenic acids from Prunella vulgaris on various plant pathogens.
Lett Appl Microbiol. 51:511-517.
Yu, GY, Sinclair, JB, Hartman, GL and Bertagnolli, BL 2002. Production of iturin A by xBacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem. 34:955-963.