Abdel-Salam, A. M., El-Shazly, M. A. and Thouvenel, J. C. 1998. Biological, biochemical and serological studies on hollyhock leaf crumple virus (HLCrV): a newly discovered whitefly transmitted geminivirus. Arab J. Biotechnol. 1:41-58.
Adams, M. J., Antoniw, J. F. and Beaudoin, F. 2005. Overview and analysis of the polyprotein cleavage sites in the family Potyviridae.
Mol. Plant Pathol. 6:471-487.
Bigarré, L., Chazly, M., Salah, M., Ibrahim, M., Padidam, M., Nicole, M., Peterschmitt, M., Fauquet, C. and Thouvenel, J. C. 2010. Characterization of a new begomovirus from Egypt infecting Hollyhock (Althea rosea). Eur. J. Plant Pathol. 107:701-711.
Bouché, N., Lauressergues, D., Gasciolli, V. and Vaucheret, H. 2006. An antagonistic function for
Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs.
EMBO J. 25:3347-3356.
Bologna, N. G. and Voinnet, O. 2014. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis.
Annu. Rev. Plant Biol. 65:473-503.
Choi, E.-S., Cho, S.-D., Shin, J.-A., Kwon, K. H., Cho, N.-P. and Shim, J.-H. 2014.
Althaea rosea Cavanil and
Plantago major L. suppress neoplastic cell transformation through the inhibition of epidermal growth factor receptor kinase.
Mol. Med. Rep. 6:843-847.
Choi, S. K., Yoon, J. Y., Ryu, K. H., Choi, J. K. and Mok, W. M. 2002. First report of zucchini yellow mosaic virus on Hollyhock (
Althaea rosea).
Plant Pathol. J. 18:121-125.
Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K. D., Carrington, J. C. and Voinnet, O. 2006. Hierarchical action and inhibition of plant dicer-like proteins in antiviral defense.
Science. 313:68-71.
Fernández, A., Guo, H. S., Sáenz, P., Simón-Buela, L., de Cedrón, M. and García, J. A. 1997. The motif V of plum pox potyvirus CI RNA helicase is involved in NTP hydrolysis and is essential for virus RNA replication.
Nucleic Acids Res. 25:4474-4480.
Garcia-Ruiz, H., Takeda, A., Chapman, E. J., Sullivan, C. M., Fahlgren, N., Brempelis, K. J. and Carrington, J. C. 2010.
Arabidopsis RNA-dependent RNA polymerases and dicerlike proteins in antiviral defense and small interfering RNA biogenesis during turnip mosaic virus infection.
Plant Cell. 22:481-496.
Hein, A. 1959. Beiträge zur Kenntnis der Viruskrankheiten an Unkräutern.
J. Phytopathol. 35:119-121.
Horváth, J., Mamula, D. J., Besada, W. H. and Juretić, N. 2010. Some properties of malva vein clearing virus isolated in Hungary and Yugoslavia.
J. Phytopathol. 95:51-58.
Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol. 10:R25
Liu, F., Liu, W. and Tian, S. 2014. Artificial neural network optimization of
Althaea rosea seeds polysaccharides and its antioxidant activity.
Int. J. Biol. Macromol. 70:100-107.
Llave, C. 2010. Virus-derived small interfering RNAs at the core of plant virus interactions.
Trends Plant Sci. 15:701-707.
Lunello, P., Touriño, A., Núñez, Y., Ponz, F. and Sánchez, F. 2009. Genomic heterogeneity and host recovery of isolates of malva vein clearing virus.
Virus Res. 140:91-97.
Menzel, W., Winter, S. and Richert-Pöggeler, K. R. 2010. First report of malva vein clearing virus naturally occurring in hollyhock in Germany.
Plant Dis. 94:276
Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon, G. J. and Qi, Y. 2008. Sorting of small RNAs into
Arabidopsis Argonaute complexes is directed by the 5′ terminal nucleotide.
Cell. 133:116-127.
Niu, Y., Pang, X., Wang, D., Guo, S. and Liu, Y. 2018. Deep sequencing analysis of a strain of pecan mosaic-associated virus infecting
Atractylodes macrocephala Koidz.
J. Plant Pathol. 100:249-255.
Parrella, G., Nappo, A. G. and Delecolle, B. 2015. Cytopathology, biology and molecular characterization of two Italian isolates of malva vein clearing virus.
Plant Sci. Today. 2:69-73.
Rajamäki, M.-L., Streng, J. and Valkonen, J. P. T. 2014. Silencing suppressor protein VPg of a potyvirus interacts with the plant silencing-related protein SGS3.
Mol. Plant-Microbe Interact. 27:1199-1210.
Srivastava, A., Kumar, S., Raj, S. K. and Pande, S. S. 2014. Association of a distinct strain of hollyhock yellow vein mosaic virus and Ludwigia leaf distortion betasatellite with yellow vein mosaic disease of hollyhock (
Alcea rosea) in India.
Arch. Virol. 159:2711-2715.
Shiboleth, Y. M., Haronsky, E., Leibman, D., Arazi, T., Wassenegger, M., Whitham, S. A., Gaba, V. and Gal-On, A. 2007. The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development.
J. Virol. 819:13135-13148.
Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Mol. Biol. Evol. 24:1596-1599.
Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M. and Watanabe, Y. 2008. The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins.
Plant Cell Physiol. 49:493-500.
Venkataravanappa, V., Reddy, C. N., Devaraju, A., Jalali, S. and Reddy, M. K. 2013. Association of a recombinant cotton leaf curl Bangalore virus with yellow vein and leaf curl disease of okra in India.
Virus Dis. 24:188-198.
Xia, Z., Peng, J., Li, Y., Chen, L., Li, S., Zhou, T. and Fan, Z. 2014. Characterization of small interfering RNAs derived from sugarcane mosaic virus in infected maize plants by deep sequencing.
PLoS ONE. 9:e97013
Yang, F., Niu, E. B., Wang, D. F. and Niu, Y. B. 2017. Sequence analysis of CP gene of malva vein clearing virus Althaea rosea isolates in China. Acta Phytopathol. Sin. 47:458-462.
Zerbino, D. R. and Birney, E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs.
Genome Res. 18:821-829.
Zhang, Y., Jin, L., Chen, Q., Wu, Z., Dong, Y., Han, L. and Wang, T. 2015. Hypoglycemic activity evaluation and chemical study on hollyhock flowers.
Fitoterapia. 102:7-14.
Zhang, X., Zhang, X., Singh, J., Li, D. and Qu, F. 2012. Temperature-dependent survival of turnip crinkle virus-infected
Arabidopsis plants relies on an RNA silencing-based defense that requires DCL2, AGO2, and HEN1.
J. Virol. 86:6847-6854.