Alhede, M, Kragh, KN, Qvortrup, K, Allesen-Holm, M, van Gennip, M, Christensen, LD, Jensen, PØ, Nielsen, AK, Parsek, M and Wozniak, D 2011. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm.
PLoS One. 6:e27943
Baron, SS, Terranova, G and Rowe, JJ 1989. Molecular mechanism of the antimicrobial action of pyocyanin.
Curr Microbiol. 18:223-230.
Bellin, DL, Sakhtah, H, Rosenstein, JK, Levine, PM, Thimot, J, Emmett, K, Dietrich, LE and Shepard, KL 2014. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms.
Nat Commun. 5:3256
Berg, G, Fritze, A, Roskot, N and Smalla, K 2001. Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae kleb.
J Appl Microbiol. 91:963-971.
Cezairliyan, B, Vinayavekhin, N, Grenfell-Lee, D, Yuen, GJ, Saghatelian, A and Ausubel, FM 2013. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans.
PLoS Pathog. 9:e1003101
Chin-A-Woeng, TF, Bloemberg, GV and Lugtenberg, BJ 2003. Phenazines and their role in biocontrol by Pseudomonas bacteria.
New Phytol. 157:503-523.
Chin-A-Woeng, TF, Bloemberg, GV, van der Bij, AJ, van der Drift, KM, Schripsema, J, Kroon, B, Scheffer, RJ, Keel, C, Bakker, PA and Tichy, H-V 1998. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis pcl1391 of tomato root rot caused by Fusarium oxysporum f. Sp. radicis-lycopersici.
Mol Plant-Microbe Interact. 11:1069-1077.
Chin-A-Woeng, TF, Thomas-Oates, JE, Lugtenberg, BJ and Bloemberg, GV 2001a. Introduction of the phzh gene of Pseudomonas chlororaphis pcl1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains.
Mol Plant-Microbe Interact. 14:1006-1015.
Chin-A-Woeng, TF, van den Broek, D, de Voer, G, van der Drift, KM, Tuinman, S, Thomas-Oates, JE, Lugtenberg, BJ and Bloemberg, GV 2001b. Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis pcl1391 is regulated by multiple factors secreted into the growth medium.
Mol Plant-Microbe Interact. 14:969-979.
Das, T, Kutty, SK, Kumar, N and Manefield, M 2013a. Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation.
PLoS One. 8:e58299
Das, T, Kutty, SK, Tavallaie, R, Ibugo, AI, Panchompoo, J, Sehar, S, Aldous, L, Yeung, AW, Thomas, SR and Kumar, N 2015. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation.
Sci Rep. 5:8398
Das, T and Manefield, M 2012. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa.
PLoS One. 7:e46718
Das, T, Sehar, S and Manefield, M 2013b. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development.
Environ Microbiol Rep. 5:778-786.
Das, T, Sharma, PK, Busscher, HJ, van der Mei, HC and Krom, BP 2010. Role of extracellular DNA in initial bacterial adhesion and surface aggregation.
Appl Environ Microbiol. 76:3405-3408.
Delaney, SM, Mavrodi, DV, Bonsall, RF and Thomashow, LS 2001. Phzo, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84.
J Bacteriol. 183:318-327.
Flaishman, M, Eyal, Z, Voisard, C and Haas, D 1990. Suppression of Septoria tritici by phenazine-or siderophore-deficient mutants of Pseudomonas.
Curr Microbiol. 20:121-124.
Flemming, H-C and Wingender, J 2010. The biofilm matrix.
Nat Rev Microbiol. 8:623-633.
Ghosh, PK and Maiti, TK 2016. Structure of extracellular polysaccharides (eps) produced by rhizobia and their functions in legume-bacteria symbiosis.
Achiev Life Sci. 10:136-143.
Gibson, J, Sood, A and Hogan, DA 2009. Pseudomonas aeruginosa-candida albicans interactions: localization and fungal toxicity of a phenazine derivative.
Appl Environ Microbiol. 75:504-513.
Gloag, ES, Turnbull, L, Huang, A, Vallotton, P, Wang, H, Nolan, LM, Mililli, L, Hunt, C, Lu, J and Osvath, SR 2013. Self-organization of bacterial biofilms is facilitated by extracellular DNA.
Proc Natl Acad Sci USA. 110:11541-11546.
Gu, M and Imlay, JA 2011. The soxrs response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide.
Mol Microbiol. 79:1136-1150.
Gunn, JS, Bakaletz, LO and Wozniak, DJ 2016. What’s on the outside matters: the role of the extracellular polymeric substance of gram-negative biofilms in evading host immunity and as a target for therapeutic intervention.
J Biol Chem. 291:12538-12546.
Haas, D and Défago, G 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads.
Nat Rev Microbiol. 3:307-319.
Hassett, D, Charniga, L, Bean, K, Ohman, D and Cohen, MS 1992. Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase.
Infect Immun. 60:328-336.
Haynes, WC, Stodola, FH, Locke, JM, Pridham, TG, Conway, HF, Sohns, VE and Jackson, RW 1956. Pseudomonas aureofaciens kluyver and phenazine α-carboxylic acid, its characteristic pigment.
J Bacteriol. 72:412.
Jayathilake, PG, Jana, S, Rushton, S, Swailes, D, Bridgens, B, Curtis, T and Chen, J 2017. Extracellular polymeric substance production and aggregated bacteria colonization influence the competition of microbes in biofilms.
Front Microbiol. 8:1865.
Liu, GY and Nizet, V 2009. Color me bad: microbial pigments as virulence factors.
Trends Microbiol. 17:406-413.
Maddula, VS, Pierson, EA and Pierson, LS III 2008. Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30-84: effects on biofilm formation and pathogen inhibition.
J Bacteriol. 190:2759-2766.
Maddula, VS, Zhang, Z, Pierson, EA and Pierson, LS III 2006. Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30-84.
Microb Ecol. 52:289-301.
Mann, EE and Wozniak, DJ 2012. Pseudomonas biofilm matrix composition and niche biology.
FEMS Microbiol Rev. 36:893-916.
Mavrodi, DV, Blankenfeldt, W and Thomashow, LS 2006. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation.
Annu Rev Phytopathol. 44:417-445.
Mavrodi, DV, Bonsall, RF, Delaney, SM, Soule, MJ, Phillips, G and Thomashow, LS 2001. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa pao1.
J Bacteriol. 183:6454-6465.
Mavrodi, DV, Mavrodi, OV, Parejko, JA, Bonsall, RF, Kwak, Y-S, Paulitz, TC, Thomashow, LS and Weller, DM 2012a. Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals.
Appl Environ Microbiol. 78:804-812.
Mavrodi, DV, Peever, TL, Mavrodi, OV, Parejko, JA, Raaijmakers, JM, Lemanceau, P, Mazurier, S, Heide, L, Blankenfeldt, W and Weller, DM 2010. Diversity and evolution of the phenazine biosynthesis pathway.
Appl Environ Microbiol. 76:866-879.
Mavrodi, OV, Mavrodi, DV, Parejko, JA, Thomashow, LS and Weller, DM 2012b. Irrigation differentially impacts populations of indigenous antibiotic-producing Pseudomonas spp. in the rhizosphere of wheat.
Appl Environ Microbiol. 78:3214-3220.
Mazzola, M, Cook, RJ, Thomashow, LS, Weller, DM and Pierson, LS III 1992. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats.
Appl Environ Microbiol. 58:2616-2624.
Miller, WG, Leveau, JH and Lindow, SE 2000. Improved gfp and inaz broad-host-range promoter-probe vectors.
Mol Plant-Microbe Interact. 13:1243-1250.
Morales, DK, Jacobs, NJ, Rajamani, S, Krishnamurthy, M, Cubillos-Ruiz, JR and Hogan, DA 2010. Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills candida albicans in biofilms.
Mol Microbiol. 78:1379-1392.
Mulcahy, H, Charron-Mazenod, L and Lewenza, S 2008. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms.
PLoS Pathog. 4:e1000213
O’Toole, GA and Kolter, R 1998. Initiation of biofilm formation in Pseudomonas fluorescens wcs365 proceeds via multiple, convergent signalling pathways: a genetic analysis.
Mol Microbiol. 28:449-461.
Okshevsky, M and Meyer, RL 2015. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms.
Crit Rev Microbiol. 41:341-352.
Ownley, BH, Weller, D and Thomashow, LS 1992. Influence of in situ and in vitro ph on suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79.
Phytopathology. 82:178-184.
Parejko, JA, Mavrodi, DV, Mavrodi, OV, Weller, DM and Thomashow, LS 2012. Population structure and diversity of phenazine-1-carboxylic acid producing fluorescent Pseudomonas spp. from dryland cereal fields of central washington state (USA).
Microb Ecol. 64:226-241.
Pierson, EA, Wood, DW, Cannon, JA, Blachere, FM and Pierson, LS III 1998. Interpopulation signaling via n-acyl-homoserine lactones among bacteria in the wheat rhizosphere.
Mol Plant-Microbe Interact. 11:1078-1084.
Pierson, LS III, Gaffney, T, Lam, S and Gong, F 1995. Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium pseudomonas aureofaciens 30-84.
FEMS Microbiol Lett. 134:299-307.
Pierson, LS III and Pierson, EA 2010. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes.
Appl Microbiol Biotechnol. 86:1659-1670.
Pierson, LS III and Thomashow, LS 1992. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84.
Mol Plant-Microbe Interact. 5:330-339.
Price-Whelan, A, Dietrich, LE and Newman, DK 2006. Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics.
Nat Chem Biol. 2:71-78.
Ramos, I, Dietrich, LE, Price-Whelan, A and Newman, DK 2010. Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales.
Res Microbiol. 161:187-191.
Sambrook, J and Russell, DW 2001. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
Selin, C, Habibian, R, Poritsanos, N, Athukorala, SN, Fernando, D and De Kievit, TR 2009. Phenazines are not essential for Pseudomonas chlororaphis pa23 biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm formation.
FEMS Microbiol Ecol. 71:73-83.
Steinberg, N and Kolodkin-Gal, I 2015. The matrix reloaded: How sensing the extracellular matrix synchronizes bacterial communities.
J Bacteriol. 197:2092-2103.
Thomashow, LS and Weller, DM 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici.
J Bacteriol. 170:3499-3508.
Turner, JM and Messenger, AJ 1986. Occurrence, biochemistry and physiology of phenazine pigment production.
Adv Microb Physiol. 27:211-275.
Wang, D, Yu, JM, Dorosky, RJ, Pierson, LS III and Pierson, EA 2016. The phenazine 2-hydroxy-phenazine-1-carboxylic acid promotes extracellular DNA release and has broad transcriptomic consequences in Pseudomonas chlororaphis 30-84.
PLoS One. 11:e0148003
Wang, Y and Newman, DK 2008. Redox reactions of phenazine antibiotics with ferric (hydr) oxides and molecular oxygen.
Envrion Sci Technol. 42:2380-2386.
Wang, Y, Wilks, JC, Danhorn, T, Ramos, I, Croal, L and Newman, DK 2011. Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition.
J Bacteriol. 193:3606-3617.
Wei, Q and Ma, LZ 2013. Biofilm matrix and its regulation in Pseudomonas aeruginosa.
Int J Mol Sci. 14:20983-21005.
Weller, D 1983. Colonization of wheat roots by a fluorescent pseudomonad suppressive to take-all.
Phytopathology. 73:1548-1553.
Whitchurch, CB, Tolker-Nielsen, T, Ragas, PC and Mattick, JS 2002. Extracellular DNA required for bacterial biofilm formation.
Science. 295:1487-1487.
Wilkinson, H, Cook, R and Alldredge, J 1985. Relation of inoculum size and concentration to infection of wheat roots by Gaeumannomyces graminis var. tritici.
Phytopathology. 75:98-103.
Wood, DW, Gong, F, Daykin, MM, Williams, P and Pierson, LS III 1997. N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere.
J Bacteriol. 179:7663-7670.
Yu, JM 2016. Regulation and ecological roles of phenazine biosynthesis in the biological control strain Pseudomonas chlororaphis 30-84. PhD thesis. Texas A&M University, College Station, TX, USA.
Yu, JM, Wang, D, Pierson, LS III and Pierson, EA 2017. Disruption of MiaA provides insights into the regulation of phenazine biosynthesis under suboptimal growth conditions in Pseudomonas chlororaphis 30-84.
Microbiology. 163:94-108.
Zhou, L, Jiang, H-X, Sun, S, Yang, D-D, Jin, K-M, Zhang, W and He, Y-W 2016. Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1-carboxamide.
World J Micriobiol Biotech. 32:50