Alfano, JR and Collmer, A 2004. Type III secretion system effector proteins: double agents in bacterial disease and plant defense.
Annu Rev Phytopathol. 42:385-414.
Alves, ADO, Xavier, ADS, Viana, IO, Mariano, RDLR and Silveira, EBD 2010. Colonization dynamics of Acidovorax citrulli in melon.
Trop Plant Pathol. 35:368-372.
Bahar, O and Burdman, S 2010. Bacterial fruit blotch: a threat to the cucurbit industry.
Isr J Plant Sci. 58:19-31.
Bahar, O, Goffer, T and Burdman, S 2009. Type IV Pili are required for virulence, twitching motility, and biofilm formation of Acidovorax avenae subsp. citrulli.
Mol Plant-Microbe Interact. 22:909-920.
Bartetzko, V, Sonnewald, S, Vogel, F, Hartner, K, Stadler, R, Hammes, UZ and Börnke, F 2009. The Xanthomonas campestris pv. vesicatoria type III effector protein XopJ inhibits protein secretion: evidence for interference with cell wall-associated defense responses.
Mol Plant-Microbe Interact. 22:655-664.
Block, CC and Shepherd, LM 2008. Long-term survival and seed transmission of Acidovorax avenae subsp. citrulli in melon and watermelon seed.
Plant Health Prog. 9:36
Bogdanove, AJ, Beer, SV, Bonas, U, Boucher, CA, Collmer, A, Coplin, DL, Cornelis, GR, Huang, HC, Hutcheson, SW, Panopoulos, NJ and Van Gijsegem, F 1996. Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria.
Mol Microbiol. 20:681-683.
Boureau, T, Routtu, J, Roine, E, Taira, S and Romantschuk, M 2002. Localization of hrpA-induced Pseudomonas syringae pv. tomato DC3000 in infected tomato leaves.
Mol Plant Pathol. 3:451-460.
Bové, JM and Garnier, M 2002. Phloem-and xylem-restricted plant pathogenic bacteria.
Plant Sci. 163:1083-1098.
Burdman, S and Walcott, R 2012. Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry.
Mol Plant Pathol. 13:805-815.
Chalupowicz, L, Dror, O, Reuven, M, Burdman, S and Manulis-Sasson, S 2015. Cotyledons are the main source of secondary spread of Acidovorax citrulli in melon nurseries.
Plant Pathol. 64:528-536.
Cheong, MS, Kirik, A, Kim, J-G, Frame, K, Kirik, V and Mudgett, MB 2014. AvrBsT acetylates Arabidopsis ACIP1, a protein that associates with microtubules and is required for immunity.
PLoS Pathog. 10:e1003952
Choi, O, Park, J-J and Kim, J 2016. Tetranychus urticae (Acari: Tetranychidae) transmits Acidovorax citrulli, causal agent of bacterial fruit blotch of watermelon.
Exp Appl Acarol. 69:445-451.
Ciesiolka, LD, Hwin, T, Gearlds, JD, Minsavage, GV, Saenz, R, Bravo, M, Handley, V, Conover, SM, Zhang, H, Caporgno, J, Phengrasamy, NB, Toms, AO, Stall, RE and Whalen, MC 1999. Regulation of expression of avirulence gene avrRxv and identification of a family of host interaction factors by sequence analysis of avrBsT.
Mol Plant-Microbe Interact. 12:35-44.
Dutta, B, Avci, U, Hahn, MG and Walcott, RR 2012. Location of Acidovorax citrulli in infested watermelon seeds is influenced by the pathway of bacterial invasion.
Phytopathology. 102:461-468.
Eckshtain-Levi, N, Munitz, T, Živanović, M, Traore, SM, Spröer, C, Zhao, B, Welbaum, G, Walcott, R, Sikorski, J and Burdman, S 2014. Comparative analysis of type III secreted effector genes reflects divergence of Acidovorax citrulli strains into three distinct lineages.
Phytopathology. 104:1152-1162.
Escolar, L, Van Den Ackerveken, G, Pieplow, S, Rossier, O and Bonas, U 2001. Type III secretion and in planta recognition of the Xanthomonas avirulence proteins AvrBs1 and AvrBsT.
Mol Plant Pathol. 2:287-296.
Feng, J, Schuenzel, EL, Li, J and Schaad, NW 2009. Multilocus sequence typing reveals two evolutionary lineages of Acidovorax avenae subsp. citrulli.
Phytopathology. 99:913-920.
Fujiwara, S, Kawazoe, T, Ohnishi, K, Kitagawa, T, Popa, C, Valls, M, Genin, S, Nakamura, K, Kuramitsu, Y, Tanaka, N and Tabuchi, M 2016. RipAY, a plant pathogen effector protein, exhibits robust γ-glutamyl cyclotransferase activity when stimulated by eukaryotic thioredoxins.
J Biol Chem. 291:6813-6830.
Han, Q, Zhou, C, Wu, S, Liu, Y, Triplett, L, Miao, J, Tokuhisa, J, Deblais, L, Robinson, H, Leach, JE and Zhao, B 2015. Crystal structure of Xanthomonas AvrRxo1-ORF1, a type III effector with a polynucleotide kinase domain, and its interactor AvrRxo1-ORF2.
Structure. 23:P1900-P1909.
Hopkins, DL and Thompson, CM 2002. Seed transmission of Acidovorax avenae subsp. citrulli in cucurbits.
HortScience. 37:924-926.
Kim, NH, Choi, HW and Hwang, BK 2010. Xanthomonas campestris pv. vesicatoria effector AvrBsT induces cell death in pepper, but suppresses defense responses in tomato.
Mol Plant-Microbe Interact. 23:1069-1082.
Kubota, M, Hagiwara, N and Shirakawa, T 2012. Disinfection of seeds of cucurbit crops infested with Acidovorax citrulli with dry heat treatment.
J Phytopathol. 160:364-368.
Latin, RX and Hopkins, DL 1995. Bacterial fruit blotch of watermelon: the hypothetical exam question becomes reality.
Plant Dis. 79:761-765.
Lo, T, Koulena, N, Seto, D, Guttman, DS and Desveaux, D 2017. The HopF family of Pseudomonas syringae type III secreted effectors.
Mol Plant Pathol. 18:457-468.
Makizumi, Y, Igarashi, M, Gotoh, K, Murao, K, Yamamoto, M, Udonsri, N, Ochiai, H, Thummabenjapone, P and Kaku, H 2011. Genetic diversity and pathogenicity of cucurbit-associated Acidovorax.
J Gen Plant Pathol. 77:24-32.
Mew, TW, Alvarez, AM, Leach, JE and Swings, J 1993. Focus on bacterial blight of rice.
Plant Dis. 77:5-12.
Minsavage, GV, Dahlbeck, D, Whalen, MC, Kearney, B, Bonas, U, Staskawicz, BJ and Stall, RE 1990. Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv vesicatoria - pepper interactions.
Mol Plant-Microbe Interact. 3:41-47.
Neto, EBS, Silveira, EB, Mariano, RLR, Nogueira, NL, Rossi, ML and Santos, LA 2006 Penetration and colonization of Acidovorax avenae subsp. citrulli in leaves, seeds and fruits of melon type yellow.
Fitopatol Bras. 31:84-88 (in Portuguese)..
Park, H-J, Seong, HJ, Sul, WJ, Oh, C-S and Han, S-W 2017. Complete genome sequence of Acidovorax citrulli strain KACC17005, a causal agent for bacterial fruit blotch on watermelon. Korean J Microbiol. 53:340-341.
Potnis, N, Minsavage, G, Smith, JK, Hurlbert, JC, Norman, D, Rodrigues, R, Stall, RE and Jones, JB 2012. Avirulence proteins AvrBs7 from Xanthomonas gardneri and AvrBs1.1 from Xanthomonas euvesicatoria contribute to a novel gene-for-gene interaction in pepper.
Mol Plant-Microbe Interact. 25:307-320.
Potnis, N, Timilsina, S, Strayer, A, Shantharaj, D, Barak, JD, Paret, ML, Vallad, GE and Jones, JB 2015. Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge.
Mol Plant Pathol. 16:907-920.
Rahimi-Midani, A, Lee, YS, Kang, S-W, Kim, M-K and Choi, T-J 2018. First isolation and molecular characterization of bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch.
Plant Pathol J. 34:59-64.
Rane, KK and Latin, RX 1992. Bacterial fruit blotch of watermelon: association of the pathogen with seed.
Plant Dis. 76:509-512.
Schaad, NW, Postnikova, E and Randhawa, P 2003. Emergence of Acidovorax avenae subsp. citrulli as a crop threatening disease of watermelon and melon. In:
Pseudomonas syringae and related pathogens: biology and genetic, eds. by NS Iacobellis, A Collmer, SW Hutcheson, JW Mansfield, CE Morris, J Murillo, NW Schaad, DE Stead, G Surico and MS Ullrich, 573-581. Kluwer Academic Publishers, Dordrecht, Netherlands.
Schaad, NW, Postnikova, E, Sechler, A, Claflin, LE, Vidaver, AK, Jones, JB, Agarkova, I, Ignatov, A, Dickstein, E and Ramundo, BA 2008. Reclassification of subspecies of Acidovorax avenae as A. Avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli (
Schaad et al., 1978) comb. nov., and proposal of A. oryzae sp. nov.
Syst Appl Microbiol. 31:434-446.
Schaad, NW, Song, W-Y and Hatziloukas, E 2000. PCR primers for detection of plant pathogenic species and subspecies of Acidovorax. United States Department of Agriculture patents. 6146834.
Schaad, NW, Sowell, G Jr, Goth, RW, Colwell, RR and Webb, RE 1978. Pseudomonas pseudoalcaligenes subsp. citrulli subsp. nov.
Int J Syst Bacteriol. 28:117-125.
Scortichini, M, Marcelletti, S, Ferrante, P, Petriccione, M and Firrao, G 2012. Pseudomonas syringae pv. actinidiae: a reemerging, multi-faceted, pandemic pathogen.
Mol Plant Pathol. 13:631-640.
Shidore, T, Broeckling, CD, Kirkwood, JS, Long, JJ, Miao, J, Zhao, B, Leach, JE and Triplett, LR 2017. The effector AvrRxo1 phosphorylates NAD in planta.
PLoS Pathog. 13:e1006442
Song, JY, Park, SY, Seo, MW, Nam, MH, Lim, HS, Lee, S-C, Lee, YS and Kim, HG 2015 Genetic characteristics of Acidovorax citrulli population causing bacterial fruit blotch against cucurbits in Korea.
Res Plant Dis. 21:82-88 (in Korean).
Sonnewald, U and Fernie, AR 2018. Next-generation strategies for understanding and influencing source-sink relations in crop plants.
Curr Opin Plant Biol. 43:63-70.
Szczesny, R, Büttner, D, Escolar, L, Schulze, S, Seiferth, A and Bonas, U 2010. Suppression of the AvrBs1-specific hypersensitive response by the YopJ effector homolog AvrBsT from Xanthomonas depends on a SNF1-related kinase.
New Phytol. 187:1058-1074.
Tans-Kersten, J, Huang, H and Allen, C 2001. Ralstonia solanacearum needs motility for invasive virulence on tomato.
J Bacteriol. 183:3597-3605.
Triplett, LR, Shidore, T, Long, J, Miao, J, Wu, S, Han, Q, Zhou, C, Ishihara, H, Li, J, Zhao, B and Leach, JE 2016. AvrRxo1 is a bifunctional type III secreted effector and toxin-antitoxin system component with homologs in diverse environmental contexts.
PLoS ONE. 11:e0158856
Üstün, S, Bartetzko, V and Börnke, F 2013. The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic-acid mediated plant defence.
PLoS Pathog. 9:e1003427
Üstün, S and Börnke, F 2015. The Xanthomonas campestris type III effector XopJ proteolytically degrades proteasome subunit RPT6.
Plant Physiol. 168:107-119.
Vanneste, JL 2000. Fire blight: the disease and its causative agent, Erwinia amylovora. CABI Publishing, Wallingford, UK. 370.
Walcott, RR, Fessehaie, A and Castro, A 2004. Differences in pathogenicity between two genetically distinct groups of Acidovorax avenae subsp. citrulli on cucurbit hosts.
J Phytopathol. 152:277-285.
Walcott, RR, Gitaitis, RD and Castro, AC 2003. Role of blossoms in watermelon seed infestation by Acidovorax avenae subsp. citrulli.
Phytopathology. 93:528-534.
Washington, EJ, Mukhtar, MS, Finkel, OM, Wan, L, Banfield, MJ, Kieber, JJ and Dangl, JL 2016. Pseudomonas syringae type III effector HopAF1 suppresses plant immunity by targeting methionine recycling to block ethylene induction.
Proc Natl Acad Sci U S A. 113:E3577-E3586.
Webb, RE and Goth, RW 1965. A seedborne bacterium isolated from watermelon. Plant Dis Rep. 49:818-821.
Willems, A, Goor, M, Thielemans, S, Gillis, M, Kersters, K and De Ley, J 1992. Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci.
Int J Syst Bacteriol. 42:107-119.
Yan, S, Yang, Y, Wang, T, Zhao, T and Schaad, NW 2013. Genetic diversity analysis of Acidovorax citrulli in China.
Eur J Plant Pathol. 136:171-181.