Baehler, E, Bottiglieri, M, Péchy-Tarr, M, Maurhofer, M and Keel, C 2005. Use of green fluorescent protein-based reporters to monitor balanced production of antifungal compounds in the biocontrol agent
Pseudomonas fluorescens CHA0.
J Appl Microbiol. 99:24-38.
Bilal, M, Guo, S, Iqbal, HMN, Hu, H, Wang, W and Zhang, X 2017. Engineering
Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review.
World J Microbiol Biotechnol. 33:191
Blumer, C, Heeb, S, Pessi, G and Haas, D 1999. Global GacA-steered control of cyanide and exoprotease production in
Pseudomonas fluorescens involves specific ribosome binding sites.
Proc Natl Acad Sci USA. 96:14073-14078.
Chen, WP and Kuo, TT 1993. A simple and rapid method for the preparation of Gram-negative bacterial genomic DNA.
Nucleic Acids Res. 21:2260
Chen, Y, Wang, J, Yang, N, Wen, Z, Sun, X, Chai, Y and Ma, Z 2018. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation.
Nat Commun. 9:3429
Chi, X, Wang, Y, Miao, J, Feng, Z, Zhang, H, Zhai, J, Zhang, H, Tian, L, Xue, W, Yang, T, Huang, R, Hu, X and Ge, Y 2017. Development and characterization of a fusion mutant with the truncated
lacZ to screen regulatory genes for phenazine biosynthesis in
Pseudomonas chlororaphis G05.
Biol Control. 108:70-76.
Chieda, Y, Iiyama, K, Yasunaga-Aoki, C, Lee, JM, Kusakabe, T and Shimizu, S 2005. Pathogenicity of
gacA mutant of
Pseudomonas aeruginosa PAO1 in the silkworm, Bombyx mori.
FEMS Microbiol Lett. 244:181-186.
Cui, Q, Lv, H, Qi, Z, Jiang, B, Xiao, B, Liu, L, Ge, Y and Hu, X 2016. Cross-regulation between the
phz1 and
phz2 operons maintains a balanced level of phenazine biosynthesis in
Pseudomonas aeruginosa PAO1.
PLoS One. 11:e0144447
de Lorenzo, V, Herrero, M, Jakubzik, U and Timmis, KN 1990. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria.
J Bacteriol. 172:6568-6572.
D’Mello, JPF, Macdonald, AMC, Postel, D, Dijksma, WTP, Dujardin, A and Placinta, CM 1998. Pesticide use and mycotoxin production in Fusarium and Aspergillus phytopathogens. Eur J Plant Pathol. 104:741-751.
Fenton, AM, Stephens, PM, Crowley, J, O’Callaghan, M and O’Gara, F 1992. Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a
Pseudomonas strain.
Appl Environ Microbiol. 58:3873-3878.
Ge, Y, Huang, X, Wang, S, Zhang, X and Xu, Y 2004. Phenazine-1-carboxylic acid is negatively regulated and pyoluteorin positively regulated by
gacA in
Pseudomonas sp. M18.
FEMS Microbiol Lett. 237:41-47.
Ge, Y, Yang, S, Fang, Y, Yang, R, Mou, D, Cui, J and Wen, L 2007. RpoS as an intermediate in RsmA-dependent regulation of secondary antifungal metabolites biosynthesis in
Pseudomonas sp M18.
FEMS Microbiol Lett. 268:81-87.
Ge, Y, Chen, L, Wang, L, Su, H, Zhou, J and Cheng, X 2008 Effects of insertional inactivation of gacS gene on two secondary metabolites in Pseudomonas chlororaphis G05. Acta Microbiol Sinica. 48:1595-1601 (in Chinese)..
Haas, D and Défago, G 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads.
Nat Rev Microbiol. 3:307-319.
Haas, D and Keel, C 2003. Regulation of antibiotic production in root-colonizing
Pseudomonas spp. and relevance for biological control of plant disease.
Annu Rev Phytopathol. 41:117-153.
Heeb, S, Itoh, Y, Nishijyo, T, Schnider, U, Keel, C, Wade, J, Walsh, U, O’Gara, F and Haas, D 2000. Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria.
Mol Plant-Microbe Interact. 13:232-237.
Hoang, TT, Karkhoff-Schweizer, RR, Kutchma, AJ and Schweizer, HP 1998. A broad-host-range
Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked
Pseudomonas aeruginosa mutants.
Gene. 212:77-86.
Huang, R, Feng, Z, Chi, X, Sun, X, Lu, Y, Zhang, B, Lu, R, Luo, W, Wang, Y, Miao, J and Ge, Y 2018. Pyrrolnitrin is more essential than phenazines for
Pseudomonas chlororaphis G05 in its suppression of
Fusarium graminearum.
Microbiol Res. 215:55-64.
Kim, KJ 2000. Phenazine 1-carboxylic acid resistance in phenazine 1-carboxylic acid producing Bacillus sp. B-6. J Biochem Mol Biol. 33:332-336.
Laville, J, Voisard, C, Keel, C, Maurhofer, M, Défago, G and Haas, D 1992. Global control in
Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco.
Proc Natl Acad Sci USA. 89:1562-1566.
Liu, Y, Wang, Z, Bilal, M, Hu, H, Wang, W, Huang, X, Peng, H and Zhang, X 2018. Enhanced fluorescent siderophore biosynthesis and loss of phenazine-1-carboxamide in phenotypic variant of
Pseudomonas chlororaphis HT66.
Front Microbiol. 9:759
Luo, W, Miao, J, Feng, Z, Lu, R, Sun, X, Zhang, B, Ding, W, Lu, Y, Wang, Y, Chi, X and Ge, Y 2019. Construction of a β-galactosidase-gene-based fusion is convenient for screening candidate genes involved in regulation of pyrrolnitrin biosynthesis in
Pseudomonas chlororaphis G05.
J Gen Appl Microbiol. 64:259-268.
Mavrodi, DV, Ksenzenko, VN, Bonsall, RF, Cook, RJ, Boronin, AM and Thomashow, LS 1998. A seven-gene locus for synthesis of phenazine-1-carboxylic acid by
Pseudomonas fluorescens 2-79.
J Bacteriol. 180:2541-2548.
Mavrodi, DV, Blankenfeldt, W and Thomashow, LS 2006. Phenazine compounds in fluorescent
Pseudomonas spp. biosynthesis and regulation.
Annu Rev Phytopathol. 44:417-445.
Miller, JH 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. 466.
Minton, NP 1984. Improved plasmid vectors for the isolation of translational
lac gene fusions.
Gene. 31:269-273.
Mulet, M, Bennasar, A, Lalucat, J and García-Valdés, E 2009. An rpoD-based PCR procedure for the identification of
Pseudomonas species and for their detection in environmental samples.
Mol Cell Probes. 23:140-147.
Livak, KJ and Schmittgen, TD 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method.
Methods. 25:402-408.
Nandi, M, Selin, C, Brawerman, G, Fernando, WG and de Kievit, TR 2016. The global regulator ANR is essential for
Pseudomonas chlororaphis strain PA23 biocontrol.
Microbiology. 162:2159-2169.
Oh, SA, Kim, JS, Park, JY, Han, SH, Dimkpa, C, Anderson, AJ and Kim, YC 2013. The RpoS sigma factor negatively regulates production of IAA and siderophore in a biocontrol
Rhizobacterium, Pseudomonas chlororaphis O6.
Plant Pathol J. 29:323-329.
Ovadis, M, Liu, X, Gavriel, S, Ismailov, Z, Chet, I and Chernin, L 2004. The global regulator genes from biocontrol strain
Serratia plymuthica IC1270: cloning, sequencing, and functional studies.
J Bacteriol. 186:4986-4993.
Park, JY, Kang, BR, Ryu, CM, Anderson, AJ and Kim, YC 2018. Polyamine is a critical determinant of
Pseudomonas chlororaphis O6 for GacS-dependent bacterial cell growth and biocontrol capacity.
Mol Plant Pathol. 19:1257-1266.
Sambrook, J and Russell, DW 2001. Molecular cloning: A laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. 2100.
Schweizer, HD 1993. Small broad-host-range gentamycin resistance cassettes for site-specific insertion and deletion mutagenesis.
BioTechniques. 15:831-834.
Shah, N, Klaponski, N, Selin, C, Rudney, R, Fernando, WG, Belmonte, MF and de Kievit, TR 2016. PtrA is functionally intertwined with GacS in regulating the biocontrol activity of
Pseudomonas chlororaphis PA23.
Front Microbiol. 7:1512
Smith, AW and Iglewski, BH 1989. Transformation of
Pseudomonas aeruginosa by electroporation.
Nucleic Acids Res. 17:10509
Suh, SJ, Runyen-Janecky, LJ, Maleniak, TC, Hager, P, MacGregor, CH, Zielinski-Mozny, NA, Phibbs, PV and West, SE 2002. Effect of vfr mutation on global gene expression and catabolite repression control of
Pseudomonas aeruginosa.
Microbiology. 148:1561-1569.
Taguchi, F and Ichinose, Y 2013. Virulence factor regulator (Vfr) controls virulence-associated phenotypes in
Pseudomonas syringae pv
tabaci 6605 by a quorum sensing-independent mechanism.
Mol Plant Pathol. 14:279-292.
Thomashow, LS and Weller, DM 1988. Role of a phenazine antibiotic from
Pseudomonas fluorescens in biological control of
Gaeumannomyces graminis var
tritici.
J Bacteriol. 170:3499-3508.
Trippe, K, McPhail, K, Armstrong, D, Azevedo, M and Banowetz, G 2013.
Pseudomonas fluorescens SBW25 produces furanomycin, a non-proteinogenic amino acid with selective antimicrobial properties.
BMC Microbiol. 13:111
Voisard, C, Keel, C, Haas, D and Dèfago, G 1989. Cyanide production by
Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions.
EMBO J. 8:351-358.
West, SE, Sample, AK and Runyen-Janecky, LJ 1994. The
vfr gene product, required for
Pseudomonas aeruginosa exotoxin A and protease production, belongs to the cyclic AMP receptor protein family.
J Bacteriol. 176:7532-7542.
Wolfgang, MC, Lee, VT, Gilmore, ME and Lory, S 2003. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway.
Dev Cell. 4:253-263.
Zhang, Q, Xiao, Q, Xu, J, Tong, Y, Wen, J, Chen, X and Wei, L 2015. Effect of
retS gene on antibiotics production in
Pseudomonas fluorescens FD6.
Microbiol Res. 180:23-29.
Zhang, Q, Ji, Y, Xiao, Q, Chng, S, Tong, Y, Chen, X and Liu, F 2016. Role of Vfr in the regulation of antifungal compound production by
Pseudomonas fluorescens FD6.
Microbiol Res. 188-189:106-112.
Zhang, B, Wang, Y, Miao, J, Lu, Y, Lu, R, Sun, X, Luo, W, Chi, X, Feng, Z and Ge, Y 2018. Reciprocal enhancement of gene expression between the
phz and
prn operon in
Pseudomonas chlororaphis G05.
J Basic Microbiol. 58:793-805.