Alfano, JR and Collmer, A 2004. Type III secretion system effector proteins: double agents in bacterial disease and plant defense.
Annu Rev Phytopathol. 42:385-414.
Büttner, D 2016. Behind the lines-actions of bacterial type III effector proteins in plant cells.
FEMS Microbiol Rev. 40:894-937.
Choi, S, Jayaraman, J, Segonzac, C, Park, H-J, Park, H, Han, S-W and Sohn, KH 2017. Pseudomonas syringae pv. actinidiae type III effectors localized at multiple cellular compartments activate or suppress innate immune responses in Nicotiana benthamiana.
Front Plant Sci. 8:2157
Couto, D and Zipfel, C 2016. Regulation of pattern recognition receptor signalling in plants.
Nat Rev Immunol. 16:537-552.
de Lange, O, Schreiber, T, Schandry, N, Radeck, J, Braun, KH, Koszinowski, J, Heuer, H, Strauß, A and Lahaye, T 2013. Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease.
New Phytol. 199:773-786.
Deslandes, L and Genin, S 2014. Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms.
Curr Opin Plant Biol. 20:110-117.
Deslandes, L, Olivier, J, Peeters, N, Feng, DX, Khounlotham, M, Boucher, C, Somssich, I, Genin, S and Marco, Y 2003. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus.
Proc Natl Acad Sci U S A. 100:8024-8029.
Deslandes, L and Rivas, S 2011. The plant cell nucleus: a true arena for the fight between plants and pathogens.
Plant Signal Behav. 6:42-48.
Engler, C and Marillonnet, S 2014. Golden Gate cloning. In:
DNA cloning and assembly methods, eds. by S Valla and R Lale, 119-131. Humana Press, Totowa, NJ, USA.
Fujiwara, S, Kawazoe, T, Ohnishi, K, Kitagawa, T, Popa, C, Valls, M, Genin, S, Nakamura, K, Kuramitsu, Y, Tanaka, N and Tabuchi, M 2016. RipAY, a plant pathogen effector protein, exhibits robust γ-glutamyl cyclotransferase activity when stimulated by eukaryotic thioredoxins.
J Biol Chem. 291:6813-6830.
Genin, S and Denny, T 2012. Pathogenomics of the Ralstonia solanacearum species complex.
Annu Rev Phytopathol. 50:67-89.
Gimenez-Ibanez, S, Hann, DR, Chang, JH, Segonzac, C, Boller, T and Rathjen, J 2018. Differential suppression of Nicotiana benthamiana innate immune responses by transiently expressed Pseudomonas syringae type III effectors.
Front Plant Sci. 9:688
Guéneron, M, Timmers, AC, Boucher, C and Arlat, M 2000. Two novel proteins, PopB, which has functional nuclear localization signals, and PopC, which has a large leucine-rich repeat domain, are secreted through the hrp-secretion apparatus of Ralstonia solanacearum.
Mol Microbiol. 36:261-277.
Guo, Y, Cordes, KR, Farese, RV Jr and Walther, TC 2009. Lipid droplets at a glance.
J Cell Sci. 122:749-752.
Hann, DR and Rathjen, J 2007. Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana.
Plant J. 49:607-618.
Heese, A, Hann, DR, Gimenez-Ibanez, S, Jones, AM, He, K, Li, J, Schroeder, JI, Peck, SC and Rathjen, J 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants.
Proc Natl Acad Sci U S A. 104:12217-12222.
Hicks, SW and Galán, JE 2013. Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors.
Nat Rev Microbiol. 11:316-326.
Hogenhout, SA, Van der Hoorn, RA, Terauchi, R and Kamoun, S 2009. Emerging concepts in effector biology of plant-associated organisms.
Mol Plant-Microbe Interact. 22:115-122.
Jacquier, N, Mishra, S, Choudhary, V and Schneiter, R 2013. Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum.
J Cell Sci. 126:5198-5209.
Jayaraman, J, Choi, S, Prokchorchik, M, Choi, DS, Spiandore, A, Rikkerink, EH, Templeton, MD, Segonzac, C and Sohn, KH 2017. A bacterial acetyltransferase triggers immunity in Arabidopsis thaliana independent of hypersensitive response.
Sci Rep. 7:3557
Jones, JDG and Dangl, JL 2006. The plant immune system.
Nature. 444:323-329.
Kadota, Y, Shirasu, K and Guerois, R 2010. NLR sensors meet at the SGT1-HSP90 crossroad.
Trends Biochem Sci. 35:199-207.
Khan, M, Seto, D, Subramaniam, R and Desveaux, D 2018. Oh, the places they’ll go! A survey of phytopathogen effectors and their host targets.
Plant J. 93:651-663.
Kosugi, S, Hasebe, M, Tomita, M and Yanagawa, H 2009. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs.
Proc Natl Acad Sci U S A. 106:10171-10176.
Lacomme, C and Santa Cruz, S 1999. Bax-induced cell death in tobacco is similar to the hypersensitive response.
Proc Natl Acad Sci U S A. 96:7956-7961.
Le Roux, C, Huet, G, Jauneau, A, Camborde, L, Trémousaygue, D, Kraut, A, Zhou, B, Levaillant, M, Adachi, H, Yoshioka, H, Raffaele, S, Berthomé, R, Couté, Y, Parker, JE and Deslandes, L 2015. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity.
Cell. 161:1074-1088.
Li, L, Atef, A, Piatek, A, Ali, Z, Piatek, M, Aouida, M, Sharakuu, A, Mahjoub, A, Wang, G, Khan, S, Fedoroff, NV, Zhu, J-K and Mahfouz, MM 2013. Characterization and DNA-binding specificities of Ralstonia TAL-like effectors.
Mol Plant. 6:1318-1330.
Macho, A 2016. Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity.
New Phytol. 210:51-57.
Macho, AP and Zipfel, C 2015. Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors.
Curr Opin Microbiol. 23:14-22.
Marois, E, Van den Ackerveken, G and Bonas, U 2002. The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host.
Mol Plant-Microbe Interact. 15:637-646.
Motion, GB, Amaro, TM, Kulagina, N and Huitema, E 2015. Nuclear processes associated with plant immunity and pathogen susceptibility.
Brief Funct Genomics. 14:243-252.
Nakano, M, Oda, K and Mukaihara, T 2017. Ralstonia solanacearum novel E3 ubiquitin ligase (NEL) effectors RipAW and RipAR suppress pattern-triggered immunity in plants.
Microbiology. 163:992-1002.
Navarro, L, Zipfel, C, Rowland, O, Keller, I, Robatzek, S, Boller, T and Jones, JDG 2004. The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis.
Plant Physiol. 135:1113-1128.
Newman, TE, Lee, J, Williams, SJ, Choi, S, Halane, MK, Zhou, J, Solomon, P, Kobe, B, Jones, JDG, Segonzac, C and Sohn, KH 2019. Autoimmunity and effector recognition in Arabidopsis thaliana can be uncoupled by mutations in the RRS1-R immune receptor.
New Phytol. 222:954-965.
Nguyen Ba, AN, Pogoutse, A, Provart, N and Moses, AM 2009. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction.
BMC Bioinformatics. 10:202
Nimchuk, ZL, Fisher, EJ, Desveaux, D, Chang, JH and Dangl, JL 2007. The HopX (AvrPphE) family of Pseudomonas syringae type III effectors require a catalytic triad and a novel N-terminal domain for function.
Mol Plant-Microbe Interact. 20:346-357.
Park, E, Lee, H-Y, Woo, J, Choi, D and Dinesh-Kumar, SP 2017. Spatiotemporal monitoring of Pseudomonas syringae effectors via type iii secretion using split fluorescent protein fragments.
Plant Cell. 29:1571-1584.
Peart, JR, Cook, G, Feys, BJ, Parker, JE and Baulcombe, DC 2002. An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus.
Plant J. 29:569-579.
Peeters, N, Carrère, S, Anisimova, M, Plener, L, Cazalé, A-C and Genin, S 2013a. Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex.
BMC Genomics. 14:859
Peeters, N, Guidot, A, Vailleau, F and Valls, M 2013b. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era.
Mol Plant Pathol. 14:651-662.
Poueymiro, M, Cunnac, S, Barberis, P, Deslandes, L, Peeters, N, Cazale-Noel, A-C, Boucher, C and Genin, S 2009. Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco.
Mol Plant-Microbe Interact. 22:538-550.
Priller, JPR, Reid, S, Konein, P, Dietrich, P and Sonnewald, S 2016. The Xanthomonas campestris pv. vesicatoria type-3 effector XopB inhibits plant defence responses by interfering with ROS production.
PLoS ONE. 11:e0159107
Pyc, M, Cai, Y, Gidda, SK, Yurchenko, O, Park, S, Kretzschmar, FK, Ischebeck, T, Valerius, O, Braus, GH, Chapman, KD, Dyer, JM and Mullen, RT 2017. Arabidopsis lipid droplet-associated protein (LDAP) - interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds.
Plant J. 92:1182-1201.
Qi, J, Wang, J, Gong, Z and Zhou, J-M 2017. Apoplastic ROS signaling in plant immunity.
Curr Opin Plant Biol. 38:92-100.
Qiu, W, Park, J-W and Scholthof, HB 2002. Tombusvirus p19-mediated suppression of virus-induced gene silencing is controlled by genetic and dosage features that influence pathogenicity.
Mol Plant-Microbe Interact. 15:269-280.
Sang, Y and Macho, A 2017. Analysis of PAMP-triggered ROS burst in plant immunity. In:
Plant pattern recognition receptors, eds. by L Shan and P He, 143-153. Humana Press, New York NY, USA.
Sang, Y, Wang, Y, Ni, H, Cazalé, A-C, She, Y-M, Peeters, N and Macho, A 2018. The Ralstonia solanacearum type III effector RipAY targets plant redox regulators to suppress immune responses.
Mol Plant Pathol. 19:129-142.
Sarris, PF, Duxbury, Z, Huh, SU, Ma, Y, Segonzac, C, Sklenar, J, Derbyshire, P, Cevik, V, Rallapalli, G, Saucet, SB, Wirthmueller, L, Menke, FLH, Sohn, KH and Jones, JDG 2015. A plant immune receptor detects pathogen effectors that target WRKY transcription factors.
Cell. 161:1089-1100.
Schandry, N, de Lange, O, Prior, P and Lahaye, T 2016. TALE-like effectors are an ancestral feature of the Ralstonia solanacearum species complex and converge in DNA targeting specificity.
Front Plant Sci. 7:1225
Segonzac, C, Feike, D, Gimenez-Ibanez, S, Hann, DR, Zipfel, C and Rathjen, J 2011. Hierarchy and roles of pathogen-associated molecular pattern-induced responses in Nicotiana benthamiana.
Plant Physiol. 156:687-699.
Sohn, KH, Segonzac, C, Rallapalli, G, Sarris, PF, Woo, JY, Williams, SJ, Newman, TE, Paek, KH, Kobe, B and Jones, JDG 2014. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana.
PLoS Genet. 10:e1004655
Solé, M, Popa, C, Mith, O, Sohn, KH, Jones, JDG, Deslandes, L and Valls, M 2012. The awr gene family encodes a novel class of Ralstonia solanacearum type III effectors displaying virulence and avirulence activities.
Mol Plant-Microbe Interact. 25:941-953.
Strasser, R 2018. Protein quality control in the endoplasmic reticulum of plants.
Annu Rev Plant Biol. 69:147-172.
Sun, Y, Li, P, Shen, D, Wei, Q, He, J and Lu, Y 2019. The Ralstonia solanacearum effector RipN suppresses plant PAMP-triggered immunity, localizes to the endoplasmic reticulum and nucleus, and alters the NADH/NAD+ ratio in Arabidopsis.
Mol Plant Pathol. 20:533-546.
Wang, R and Brattain, MG 2007. The maximal size of protein to diffuse through the nuclear pore is larger than 60kDa.
FEBS Lett. 581:3164-3170.
Wei, Y, Sang, Y and Macho, A 2017. The Ralstonia solanacearum type III effector RipAY is phosphorylated in plant cells to modulate its enzymatic activity.
Front Plant Sci. 8:1899.
Zhao, C, Wang, H, Lu, Y, Hu, J, Qu, L, Li, Z, Wang, D, He, Y, Valls, M, Coll, NS, Chen, Q and Lu, H 2019. Deep sequencing reveals early reprogramming of Arabidopsis root transcriptomes upon Ralstonia solanacearum infection.
Mol Plant-Microbe Interact. 32:813-827.
Zheng, X, Li, X, Wang, B, Cheng, D, Li, Y, Li, W, Huang, M, Tan, X, Zhao, G, Song, B, Macho, AP, Chen, H and Xie, C 2019. A systematic screen of conserved Ralstonia solanacearum effectors reveals the role of RipAB, a nuclear-localized effector that suppresses immune responses in potato.
Mol Plant Pathol. 20:547-561.
Zipfel, C, Robatzek, S, Navarro, L, Oakeley, EJ, Jones, JDG, Felix, G and Boller, T 2004. Bacterial disease resistance in Arabidopsis through flagellin perception.
Nature. 428:764-767.